• Title/Summary/Keyword: Combustion Fan

Search Result 52, Processing Time 0.02 seconds

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

Prediction of the Occurring Time of Stall for a Booster Fan in a Power Plant Combusting Low Quality Coal through Draft Loss (저품위탄 연소시 탈황용 승압송풍기 실속시점 예측)

  • Kim, Yeong-Gyun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • This study presents how low quality coal combustion affects the desulfurizer draft system by correlating of draft loss in a coal-fired thermal power plant and predicts the stall occurrence time of a booster fan. In case of low quality coal, a lot of coal is needed to generate equivalent output power, thereby the rating of increasing draft loss was faster than designed amount of coal. We surely confirmed that draft loss affects the specific energy of a booster fan strongly. On this basis, it is possible to predict the occurring time of stall for a booster fan from current operation specific energy to stall limit specific energy. This study suggests increasing speed of draft loss in each caloric value and the impact of specific energy at a booster fan, it expects to help safe operating in a thermal power plant.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

A Study on the Optimum Design Parameters of the Thermostat for Coolant Temperature Control of an Automotive Engine (자동차용 기관의 냉각수 온도조절을 위한 서머스탯의 최적설계 변수설정에 관한 연구)

  • 박경석;신진식;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • It is widely recognized that exhaust emissions, fuel economy and engine torque are affected by engine temperature, and logic would suggest that a cooling system offering a better compromise of engine temperature would improve both overall engine performance and economy. Author measured coolant temperature of some parts and flow rate which are necessary to heat transfer in a engine. And Author determined parameters necessary for the optimum design of a thermostat to keep the best engine performance ; determined the optimum operating temperature of electric cooling fan. A summary of this study is followed. 1. Study of the effects of cooling condition to combustion character in a engine. 2. Analyze of heat transfer surrounding engine cylinders. 3. Study of the effects of cooling character to engine heat rejection, determination of the optimum collant temperature for keeping the optimum engine performance and determination of the optimum design of a thermostat for keeping that temperature.

  • PDF

Distribution of Pollutant on the Indoor Air of Passenger Car (철도차량 객차내 오염물질의 분포경향에 관한 전산해석)

  • So, Jin-Sub;Chun, Chul-Kyun;Park, Chan-Su;Choi, Ju-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.7-16
    • /
    • 2003
  • The transfer of air pollutants between passenger room and service room in train are investigated by the computational analysis. The effects of service room temperature, inlet velocity, initial concentration and heating are studied. The flow induced by the difference of density between two rooms is found to take the major role in transfer of polluted air. Low temperature of service room enhances the polluted air flow into passenger room along the floor. Exhaust fan above the door between two rooms is not effective for this case. Strong inlet flow is found to suppress polluted air flow from service room. The heating of passenger room can promote air pollution.

  • PDF

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame (연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.

Fire Suppression Effect of PPV with Water Mist System (미세물분무를 이용한 PPV의 화재진압효과)

  • Kim, Sung-Won;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2003
  • To inject fresh air into a fire room, Positive Pressure Ventilation (PPV) can be used and the blower of PPV increases inside pressure of the room. It makes high flow rate of products of combustion, smoke and heat from the structure, and it is very helpful to fireman on the fire extinguishing work. The flame moves to the direction of airflow and the temperature of flame can be decreased rapidly. In this experiment, a water mist system is applied to PPV to increase the effectiveness, and various effective factors are studied. n-Heptane and pine wood stick were used as fuel. Temperatures at the above and behind the combustion pan were strongly reduced by the water mist system and by the convective cooling with airflow. The smoke density was also decreased by PPV with water mist system and it can be explained by the absorption of smoke particles on the water mist droplet and by the strong exhausting effects of mobile fan.

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

Optimization Design of Commercial Large Gas Oven Systems (상업용 대형 가스오븐 시스템의 최적 설계)

  • Kim, Do-Hyun;Yu, Byeonghun;Kum, Sungmin;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.21-28
    • /
    • 2016
  • This research was conducted for the optimal design of large commercial gas oven system. Equivalent ratio was determined through a numerical analysis and experiments on the combustion condition of the combustor. After reviewing the supply capacity of burner(20,000 kcal) and control method of convection fan, two types of heat exchangers designed. In order to maintain a uniform temperature inside the oven is required convection fan braking system. The center temperature in the oven rises more rapidly when the convectional fan is rotated in the counterclockwise direction than the counter-clockwise direction. And The efficiency of the system by installing a large heat transfer area was higher.