• 제목/요약/키워드: Combustion Experiment

검색결과 699건 처리시간 0.023초

미분탄 탈휘발 및 촤반응 모델 평가 (Evaluation of the empirical and structural coal combustion models in the IFRF no.1 Furnace)

  • 정대로;한가람;허강열;박호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.217-219
    • /
    • 2012
  • This study describes 3D RANS simulation of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. The simulation of pulverized coal combustion involves various models for complex physical processes and needs information of pyrolysis rate, the yields and compositions of volatiles and char especially in coal conversion. The coal conversion information can be acquired by the experiment or the pre-processor code. The empirical model based on the experiment of the IFRF and the structural model based on the pre-processor code of the PC-COAL-LAB were evaluated against the measurement data.

  • PDF

대항분출 연소기의 난류화염 구조 (Flame Structure of Moderate Turbulent Combustion in Opposed Impinging Jet Combustor)

  • 조용진;윤영빈;이창진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.46-51
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion.

  • PDF

예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성 (Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level)

  • 김진식;곽지현;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

디젤기관의 스모크배출의 확산연소 의존성에 관한 연구 (A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion)

  • 한성빈;문성수;이성열
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

부하 변화에 따른 리니어엔진의 동적·연소특성에 대한 연구 (A Study About Effects of Changed Load on Dynamic·Combustion Characteristics of Linear Engine)

  • 이재완;임옥택;김강출
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.206-215
    • /
    • 2013
  • A linear engine has advantages in terms of volume and weight, because there are no rotating parts. Thus, it is considered that linear engines might be suitable in hybrid vehicles. However, the linear engine has challenges in terms of the engine ignition timing and efficiency, so the engine has not been commercialized yet. In this study, the dynamic and combustion characteristics of the linear engine might be specified by various loads which are changed by conductance. The engine used in this experiment consists of two combustion chambers, four compressors, two linear alternators and a mover with a piston head and magnets. The way fuel is supplied in the experiment is by propane fuel being mixed with air in the carburetor, then being delivered into combustion cylinders via compressors. In the experiment, conductance is altered from 0.04 to 0.16mho, and the ignition timing is ahead by just 5.0mm from the maximum stroke. As a result of the experiment, frequency, stroke, input calories and maximum pressure are decreased when the conductance is increased. Meanwhile, IMEP, generation efficiency and electric power are increased when the conductance is increased. Therefore, it might confirm that high conductance generates more efficient electric power, but that thermal efficiency is the highest in the state of 0.08mho.

실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구 (A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace)

  • 박규식;이주형;김정훈;이상협;서용칠
    • 한국대기환경학회지
    • /
    • 제24권2호
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

고체 연료의 유동층 연소 - 시험 연소로 특성 및 실험 인자 설정 (Solid fuel combustion in a fluidized bed - Characteristics of a lab-scale combustor and experimental parameters)

  • 최진환;박영호;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.236-245
    • /
    • 2000
  • A laboratory scale fluidized bed reactor was developed to treat the combustion characteristics of some fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experiment and interpretation of the results and finally determine the particle characteristics on the pyrolysis and combustion process of the fuel. A single particle combustion process in the fluidized bed was closely observed. Understanding experimental facility characteristics and determining parameters were also carried out. The fuel combustion processes were observed by carbon conversion rate, recovery and mean carbon conversion time. They were estimated with the CO, $CO_2$ gas concentration monitored at the exit of the combustor. Fuel drying and pyrolysis process were governed by temperature distribution in the fuel particle. There was a significant overlap of the drying and devolatilization. However, transition process from devolatilization to char combustion seemed to be determined by mechanical solidity of the fuel particle after devolatilization process.

  • PDF

액체로켓엔진 안정성 예측을 위한 시험적 기법 연구 (Experimental study of combustion stability assesment of injector)

  • 이광진;서성현;문일윤;한영민;설우석;이수용
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.145-152
    • /
    • 2003
  • The objective of the present study is to develop methodology for the assesment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a full-scale injector has been employed in the study, which burns gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Single & multi split triplet injectors have been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

맥동류의 연소소음 연구 (Study on Combustion Noise of Unsteady Flow)

  • 양영준;도승주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.355-357
    • /
    • 2014
  • The usefulness of unsteady combustion was experimentally investigated using confined premixed flames stabilized by a rearward-facing step. For this purpose, apparatus of forced pulsating mixture supply, which could be modulated its amplitude and frequency, was designed. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations and furthermore it exhibits desirable performance, from a practical point of view, such as high load combustion and reduction of pollutant emission like nitric oxide.

  • PDF

바이오매스 연료의 연소 특성 실험 (A Experiment of Combustion Behavior of Biomass Fuels)

  • 김학덕;김영대;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.503-511
    • /
    • 2018
  • There have been many studies of combustion in the circulating fluidized bed. However, little study is available for combustion of wood pellet together fed with wood chip. The mixed ratio of two fuels is an useful information when thermal power company would receive the Renewable Energy Portfolio Standard (RPS) from government. In this study, the combustion behavior and kinetics of such biomass fuels are evaluated using fluidized bed reactor and thermogravimetric analyzers. The mixing ratio of wood chip relative to wood pellet was varied at different temperatures. The results show that a combustion reactivity changed significantly at the wood chip mixing ratio of 40%, particularly at low temperature condition.