• Title/Summary/Keyword: Combustion Experiment

Search Result 699, Processing Time 0.022 seconds

Combustion Control and Symptom Detection on Self-excited Combustion Oscillation (자려 연소진동에 관한 연소제어와 징후의 검출)

  • Yang Young-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

A numerical model for combustion process of single coal particle in hot gas (고온 유동장 내 석탄 단입자 연소과정의 특성화를 위한 수치적 연구)

  • Niu, Xiaoyang;Lee, Hookyung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.301-304
    • /
    • 2015
  • With the experiment observation of single particle combustion, this model is built for the numerical analysis of the process. It's about the single coal particle combustion process under different conditions with reasonable assumptions. The model can express the mass, radius, density, temperature changing with different particle sizes, oxygen concentration and gas temperature. It also includes the flame sizes change in different condition and the diffusion of each species. The result shows the characters of the combustion.

  • PDF

A Cold Flow Experiment for the Incinerator Shape Design (소각로의 형상설계를 위한 냉간유동실험)

  • 류창국;김숭기;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2184-2193
    • /
    • 1994
  • A flow visualization experiment using water-table models was performed. The water-table models simulated the two-dimensional cold flow fields inside the combustion chambers of incinerators. The flow were visualized by small but neutrally bouyant particles photographed by an overhead camera. The experimentally simulated flow fields apparently showed distinct features of two combustion chamber shapes; counter and parallel flow types. The significance of the secondary air injection on the mixing of combustion gases were clearly observed. The effects of the recirculation zones, which were present in the secondary chamber, were discussed by considering the importance of them for optimal combustion.

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

Characteristics of Unsteady Combustion and Combustion Control by Pulsating Mixture Supply

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.8-14
    • /
    • 2001
  • The effects of unsteady combustion are experimentally studied using forced pulsating mixture supply. It was shown that unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations. It may also have desirable performances, from a practical point of view, such as high combustion load, augmented heat transfer, reduced pollutant emissions and so on. We examined the characteristics of unsteady combustion driven by forced pulsating mixture supply in a small duct-combustor with a rearward-facing step. Further, we found its influence on the onset of self-excited combustion oscillations, the possibility of suppressing self-excited combustion oscillations and the reason why the self-excited combustion oscillation was suppressed using the forced pulsating mixture supply, comparing with the steady mixture supply.

  • PDF

A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine (압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion (분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감)

  • Jung, Yong-Jin;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

Large Eddy Simulation of Turbulent Combustion Flow Based on 2-scaler flamelet approach

  • Oshima, Nobuyuki;Tominaga, Takuji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.18-21
    • /
    • 2006
  • This paper investigates LES of turbulent combustion flow based on 2-scalar flamelet approach, where a G-equation and a conserved scalar equation simulate a propagation of premixed flame and a diffusion combustion process, respectively. The turbulent SGS modeling on these flamelet combustion approach is also researched. These LES models are applied to an industrial flows in a full scale gasturbine combustor with premixed and non-premixed flames. The numerical results predict the characteristics of experiment temperature profiles. Unsteady features of complex flames in combustor are also visualized.

  • PDF

RISK EVALUATION OF CARBON MONOXIDE IN COMPARTMENT FIRE

  • Kim, Kwang Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.66-76
    • /
    • 1997
  • In order to investigate the generation of carbon monoxide and heat loss of incomplete combustion in compartment fires, an experiment was conducted in a small scale compartment by using methanol as a fuel. The concentration of carbon monoxide and the toxicity parameter showed high values when the mass air - to - fuel stoichiometric ratio is under 1.0. The constitution of the combustion gas was showed to estimate it from the . The heat loss due to incompleteness of combustion is about one third of heat of combustion in case of under 1.0.

  • PDF