• 제목/요약/키워드: Combustion Emission Characteristics

Search Result 921, Processing Time 0.026 seconds

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber (석탄가스화 연료의 정적 예혼합 연소특성)

  • Kim Tae-Kwon;Jang Jun-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

A Study on Combustion Characteristics using Forced Pulsating Flow (강제 맥동류를 이용한 연소특성 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.109-114
    • /
    • 2012
  • The combustion characteristics using forced pulsating flow were experimentally investigated with confined premixed flames stabilized by a reward-facing step. The intermittent combustion has many merits, for instance, such as high load combustion, high heat transfer, low emission gas, compared with those of continuous combustion. For these purposes, data processing of binary image was conducted to reveal the differences between intermittent and continuous combustion. As the results, it was possible to calculate the reaction zone using OH-emission band and, therefore, showed that forced pulsating flow was useful in combustion technology.

A Study on the Characteristics of Combustion for Substituting $CO_2\;for\;N_2$ in Combustion Air (연소용 공기중 $N_2$$CO_2$대체에 대한 연소특성 해석)

  • Kim, Han-Seok;Ahn, Kook-Young;Kim, Ho-Keun;Lee, Yun-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • [$CO_2$] is a well-known greenhouse gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. The central method of low $CO_2$ emission is Oxygen/CxHy combustion. Theoretically Oxygen/CxHy combustion only produces $CO_2\;and\;H_2O$ and allows convenient recovery of $CO_2$. The combustion characteristics, flame stability, composition in the flame zone and temperature profile were studied experimentally for various compositions of oxidant by substituting $CO_2\;for\;N_2$ with the constant $O_2$ concentration. Results showed that flame became unstable due to the high heat capacity, low transport rate and strong radiation effect of $CO_2$ in comparison with those of $N_2$. The reaction zone was quenched and broadened, as the ratio of $CO_2\;to\;N_2$ was increased. The emission of NOx in flue gas decreased due to the decreased temperature of the reaction zone. As the conversion ratio of $CO_2\;to\;N_2$ was increased, the emission of CO and the higher temperature zone increased due to decrease of reaction rate by the a quenching effect.

  • PDF

A Study on NOx Emission Characteristics of An Industrial Gas Turbine (산업용 가스터빈의 NOx 배출 특성에 관한 연구)

  • Jeong, Jai-Mo;Park, Jung-Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • The purposes of this study are to analyze nitrogen oxides(NOx) formation mechanism and to reduce abnormal NOx emissions in gas turbines. Industrial gas turbines emissions have potential to negative affect to the atmosphere in many different ways such as photochemical smog, acid rain and global warming. In conventional gas turbine combustors, one of the main pollutants such as nitrogen oxide(NOx) species, are principally formed from combustion process of fuel with oxygen in the primary combustion zone, and their emission levels are highly depend on peak temperatures in the combustor. In order to examine the characteristics and the effect of NOx formation, we used gas turbine of which commercial operating in Korea. From the examination, it has been found that NOx emissions are relatively high at low load(output) and during combustion mode change. Also, the effect of Air/Fuel ratio was considered. As the Air/Fuel ratio was increased in Lean-Lean mode, the NOx emission was decreased. The results of this study indicated that NOx emission levels are highly depend on peak temperature and pressure of combustion process in the combustor.

  • PDF

An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber (환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구)

  • Kim, D.H.;Bae, J.U.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine (GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, H.G.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine (커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성)

  • Kim, Myung-Yoon;Ha, Sung-Yong;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

The Impact of Ethanol Contents on Combustion Performance and Nano-particle Emission Characteristics from Spark Ignition Direct Injection (SIDI) Engine (에탄올 함량비가 SIDI 엔진의 연소성능과 입자상물질 배출특성에 미치는 영향에 대한 연구)

  • Cho, Jaeho;Myung, Cha-Lee;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.343-344
    • /
    • 2014
  • Ethanol as fuel of Spark Ignition Direct Injection (SIDI) engine has become a feasible alternative due to its better anti-knock characteristics and lower nano-particle emission level. There are a number of studies on the emission characteristics from SIDI engine fuelled with various ethanol contents. In general, increase of ethanol contents leaded to decrease of nano-particle discharge, but the other researches showed reversed result at a singular range of ethanol contents. This study focused on the engine combustion performance and nano-particle emission characteristics of SIDI engine fuelled with intermediate ethanol contents.

  • PDF