• Title/Summary/Keyword: Combustion Dynamics

Search Result 310, Processing Time 0.022 seconds

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator (폐기물 층 연소와 노내 유동 해석)

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF

Influence of Coal Conversion Model and Turbulent Mixing Rate in Numerical Simulation of a Pulverized-coal-fired Boiler (미분탄 보일러 연소 해석에서 석탄 반응 모델 및 난류 혼합 속도의 영향 평가)

  • Yang, Joo-Hyang;Kim, Jung-Eun A.;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2015
  • Investigating coal combustion in a large-scale boiler using computational fluid dynamics (CFD) requires a combination of flow and reaction models. These models include a number of rate constants which are often difficult to determine or validate for particular coals or furnaces. Nonetheless, CFD plays an important role in developing new combustion technologies and improving the operation. In this study, the model selection and rate constants for coal devolatilization, char conversion, and turbulent reaction were evaluated for a commercial wall-firing boiler. The influence of devolatilization and char reaction models was found not significant on the overall temperature distribution and heat transfer rate. However, the difference in the flame shapes near the burners were noticeable. Compared to the coal conversion models, the rate constant used for the eddy dissipation rate of gaseous reactions had a larger influence on the temperature and heat transfer rate. Based on the operation data, a value for the rate constant was recommended.

An Experimental Study on the Flame Dynamics in the Model Combustor with V-gutter type Flameholder (V-gutter 형 보염기가 장착된 모델 연소기 내에서 발생하는 화염 동특성 연구)

  • Song, Jin-Kwan;Jeong, Chan-Young;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.379-385
    • /
    • 2010
  • Mechanism of combustion frequencies occurring during combustion is experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with a cross section area of $40{\times}40mm$. The v-gutter type flameholder with 10, 12, 14mm width is mounted at the side wall of combustor. CNG were used as fuel, and the fuel was injected transversely into air crossflow. It is found that combustion frequencies were considered as first longitudinal mode caused by combustor geometry. And it is found that flameholder length affects the flame holding range. Also, it is observed first longitudinal pressure oscillations make significant changes of flame structure.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket (스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향)

  • Kim, Jungeun;Lee, Sulha;Kim, Ji Eun;Kim, Ji Hye;Yoo, Min Jeong;Han, Songee;Lee, Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.672-674
    • /
    • 2017
  • The addition of swirl is a common technique used in premixed combustors in order to gain stability of the combustion with the improvements in mixing characteristics. recent experimental studies have observed that the addition of swirl oxidizer flow can effectively reduce the combustion instability in hybrid rocket. Investigation was continued to analyze the effect of the swirl on the internal flow of hybrid rocket engine main combustion chamber. The flow influenced by wall blowing as a representation of fuel evaporation interacts with swirling flow. Swirl angle increases, the amplitude of the combustion pressure decrease as the unstable combustion processes. These results suggest that the oxidizer swirling flow by the swirl angle causes the change of the turbulent flow characteristics inside the combustion chamber and suppresses the factors causing the combustion instability.

  • PDF

Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors (스크램제트 연소기 내의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Won, Su-Hee;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Numerical Simulations of a 100MWe Boiler Retrofitted for Demonstration of Oxy-coal Combustion (100MWe급 석탄 순산소 연소 실증 보일러의 연소 특성에 대한 전산유동해석 연구)

  • Kim, Jungeun A.;Park, Sanghyun;Kim, Young Ju;Kim, Hyeok-Pil;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.337-339
    • /
    • 2012
  • This study investigates the combustion and heat transfer characteristics of a 100MWe pulverized coal boiler retrofitted for demonstration of oxy-coal combustion. By computational fluid dynamics (CFD), the flame temperature and wall heat flux were compared for air-fuel and oxy-fuel combustion with different $O_2$ concentration in the oxidizers. It was found that the oxy-fuel combustion requires an $O_2$ concentration higher than 27 vol.% for the boiler to achieve the similar value of wall heat flux with air-fuel combustion.

  • PDF