• Title/Summary/Keyword: Combustion Dynamics

Search Result 310, Processing Time 0.022 seconds

Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation (국내 성능위주설계의 시행현황 분석 - 화재시나리오 및 시뮬레이션을 중심으로)

  • An, Sung-Ho;Mun, Sun-Yeo;Ryu, Ill-Hyun;Choi, Jun-Ho;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.32-40
    • /
    • 2017
  • The current status of Performance-Based Design (PBD) implemented in 4 wide areas (Seoul, Gyeonggi, Incheon and Busan) over the past 5 years was reviewed with regard to the number of PBD implementation and target buildings. Then, detailed status related to fire scenarios, input information for fire simulation, and grid size were analyzed with the pre-review for the PBD. As a result, the domestic PBD was mainly applied to the mixed occupancy. In the fire simulations performed on the identical fire scenario and fire space, the maximum heat release rate (HRR) varied significantly depending on the PBD designer. Various combustibles were also considered for the identical fire source, and their combustion properties also showed considerable uncertainty. In addition, the applicability of accurate input information for predictive models of heat and smoke detectors was examined. Finally, the average grid size for the fire simulation using Fire Dynamics Simulator (FDS) was analyzed, and the improvement of PBD to minimize designer dependency was proposed.

Effect of Tip Size and Aspect Ratio on Reforming Performance in a Methane Reformer for Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 막 연료전지를 위한 메탄 개질기에서 형상 변화가 개질 성능에 미치는 영향에 대한 연구)

  • Seo, Dong-Kyun;Noh, In-Kyu;Hwang, Jung-Ho;Choi, Jong-Kyun;Shin, Dong-Hoon;Kim, Hyung-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2010
  • Design of a reformer consisting of combustion chamber and reforming chamber was investigated for a 1 kW and a 5 kW polymer electrolyte membrane fuel cell (PEMFC), respectively, using the computational fluid dynamics (CFD). First, the 1kW reformer was considered to obtain the reliability of the numerical study. It was modeled, calculated and compared with experimental data. Second, the 5kW reformer was considered for a geometric study. Three tip sizes (35, 40, and 45 mm) and five aspect ratios was selected. It was found that the optimum was at tip sizes of 40 and 45 mm, at aspect ratios of -10% and -20% of the standard length.

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations (분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해)

  • Murugesan, Ramki;Park, Gyoung Lark;Levitas, Valery I.;Yang, Heesung;Park, Jae Hyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.54-63
    • /
    • 2015
  • We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.

CFD Simulation Study to analyze the Dispersion and Explosion of Combustible Gas (CFD를 이용한 가연성 가스의 확산 및 폭발 Simulation)

  • Jang, Chang-Bong;Lee, Hyang-Jik;Lee, Min-Ho;Min, Dong-Chul;Back, Jong-Bae;Ko, Jae Wook;Kwon, Hyuck-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.58-65
    • /
    • 2012
  • Various models are currently applied to predict the dispersion of leaked combustible gas and overpressure from a vapor cloud explosion(VCE). However, those models use simple approaches where topography and barriers of anti-leakage facilities and the effects of buildings were not sufficiently taken into considerations. For this reason, this study has proposed the dispersion process of leaked gas, distribution patterns, and flames and overpressure generated from gas explosions in 2D and 3D virtual spaces by reviewing more accurately analyzable computational fluid dynamics (CFD) model by considering various variables including combustion types of leaked substances, geometry of facility, warm currents, barriers, the influence of wind, and others. The CFD analysis results are anticipated to be usefully applied for the risk analysis of explosion and for the risk-based design.

Social Impact Assessment for Nano Technology Using a System Dynamics (시스템 다이내믹스를 활용한 나노기술의 사회영향평가)

  • Bae, Seoung Hun;Shin, Kwang Min;Lim, Jung Sun;Yoon, Jin Seon;Kang, Sang Kyu;Kim, Jun Hyun;Kim, Min Kwan;Han, Chang Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2015
  • The study aims at quantifying the effect of nano technology in the fields of economics and social aspects by using the methodology of system dynamics. A case study which using selenium oxide nanoparticles as additive agent in order to enhance fuel efficiency was selected as an example of nano technology in economic and societal benefits. Additionally, models for exhaust gas from combustion of fuel (diesel) and related issues are developed to evaluate real-time assessment of the effect of nano technology. It was found that the selenium oxide nanoparticles increase fuel efficiency, and it also affects on the amount of exhaust gas and the respiratory disease related issues. The results of this study which give quantitative value for the effect of nano technology can be used as objective references in development of national policy.

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

A Experimental Study on the Arson Fire Characteristics (방화(放火)화재 특성에 관한 실험적 연구)

  • Choi, Jin;Kwon, Oh-Seung;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This Study is to analyze the characteristics of arson fire under fire dynamics to protect people and property from arson fire which has been radically increased with the development of the Korean economy. Assembly and merchandise purposes such as theater, retail, and exhibition has been performed as the arson fire study. The experiment for this study is based on the analysis of the characteristic for its own combustion process and smoke spread when arson fire occurs. This study presents the analysis through comparing the condition of setting fire using liquid fuel such as thinner on purpose to the condition of setting fire naturally depending on each occupancy.

Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments (워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구)

  • Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF

Simplified Modeling of Deflagration in Vessels

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1338-1348
    • /
    • 2004
  • A simplified method that models the deflagration process occurring in closed or vented vessels is described. When combustion occurs within the spherical or cylindrical vessels, the flame moves spherically or segmentally to the vessel periphery. The volume and area of each element along the propagating flame front are calculated by using simple geometrical rules. For instabilities and turbulence resulting in enhanced burning rates, a simple analysis results in reasonable agreement with the experimental pressure transients when two burning rates (a laminar burning rate prior to the onset of instability and an enhanced burning rate) were used. Pressure reduction caused by a vent opening at predetermined pressure was modeled. Parameters examined in the modeling include ignition location, mixture concentration, vented area, and vent opening pressure. It was found that venting was effective in reducing the peak pressure experienced in vessels. The model can be expected to estimate reasonable peak pressures and flame front distances by modeling the enhanced burning rates, that is, turbulent enhancement factor.

A Numerical Analysis of Growth of Non-spherical Silica Particles in a Premixed Flat Flame (예혼합 평면화염에서 비구형 실리카 입자의 성장에 관한 수치해석적 연구)

  • Oh, Se-Baek;Lee, Bang-Weon;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1351-1358
    • /
    • 2000
  • Two dimensional aerosol dynamics considering the effects of particle generation, coagulation, thermophoresis, sintering and convection has been studied to obtain the growth of non-spherical silica particles in conjunction with determining flame temperature by performing combustion analysis of premixed flat flame. Heat and mass transfer analysis includes 16 species, 29 chemical reaction steps together with oxidation and hydrolysis of SiCl4. The effect of radiation heat loss has also been included. The predictions of flame temperatures and the evolution of particle size distributions were in a reasonable agreement with the existing experimental data.