• Title/Summary/Keyword: Combustion Dynamic Characteristics

Search Result 143, Processing Time 0.026 seconds

Thermal Characteristics of Polyvinylchloride in Combustion Reaction Using TGA (TGA를 이용한 폴리염화비닐의 연소반응에서의 열적 특성 연구)

  • Seo, Su-Eun;Kang, Yun-Jin;Min, Cho-Young;Bae, Dong-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • The combustion reaction of polyvinylchloride(PVC) was investigated using a thermogravimetric technique under an air atmosphere condition at several heating rates from 10 to $50^{\circ}C$/min. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative were analyzed by a variety of analytical methods such as Kissinger, Friedman, Chatterjee-Conrad, Ozawa and Coats-Redfern methods. The combustion reaction of PVC proceeded in two steps; the first step was caused by the dehydrochlorination process in PVC, and the second step by the combustion of polyene. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because there are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis.

Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector (GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링)

  • Lee, Kye Eun;Kim, Na Young;Cho, Young Jun;Lee, Dong Ryul;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Experimental Study on Dynamic Characteristics of an Impinging Jet Injector (충돌형 분사기의 동특성 실험연구)

  • Kim, Jiwook;Chung, Yunjae;Lee, Ingyu;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.86-94
    • /
    • 2013
  • Research on dynamic characteristics of injectors gives us insight for preventing combustion instability in a rocket engine. While lots of studies have been done about swirl injectors' dynamic characteristics, little is known about impinging jet injectors' dynamic characteristics. For this reason, this study was aimed to reveal the dynamic characteristics of an impinging jet injector based on experiment using a hydraulic mechanical pulsator. Gain, which is the relationship between input pressure and output value(pressure or velocity) was analyzed with the frequency and manifold pressure change. Pulsating frequency was chosen in the low range: 5, 10, 15 Hz. As a background work, Methods to determine the jet velocity were discussed. Klystron effect was also considered as a factor of this experiment.

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Effect of Injector Design on Combustion Characteristics of Full-scale Gas Generators (분사기 설계에 따른 실물형 가스발생기 연소특성 비교)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.309-315
    • /
    • 2006
  • Effects of injector or design on combustion characteristics of full-scale gas generators were studied. Three full-scale gas generators, which have same total mass flow rate but mass flow rate per injector is different depending on their designs, were manufactured. Thirteen, nineteen and thirty seven injectors, which have internal-mixing and double-swirl characteristics, are distributed in injector heads, respectively. The results showed that special pressure fluctuations in the gas generators with 13 and 19 injectors didn't appear around longitudinal resonant frequency, but small longitudinal-mode instability appeared in the gas generator with 37 injectors. As the number of injectors installed in injector heads increased, temperature distribution in combustion chambers showed small deviations, but the damage of LOx posts increased.

  • PDF

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.