• 제목/요약/키워드: Combustible fuel-air mixture

검색결과 9건 처리시간 0.023초

LBT연소를 통한 Idling 운전시의 연소안정성 평가 (Evaluation of Combustion Stability of Idling Speed State)

  • 이중순;이종승;김진영;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF

화상 분석에 의한 디젤기관의 연소과정에 관한 연구 -에탄올-경유 혼합 연료의 사용- (A Study on Combustion Process of Diesel Engine by Image Analysis -the use of ethanol-diesel oil blend fuel-)

  • 이형곤;방중철
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.94-101
    • /
    • 2001
  • In this paper, the combustion improvement effects of alcohol-diesel oil blend fuel were investigated in a visualization engine. As a result of experiment, it was found out that the combustion chamber of deep dish type and re-entrant type at the same operation condition. However, when the con-tent of alcohol exceeded 10% of total fuel delivery, the combustion of alcohol-diesel oil blend fuel was worse than that of diesel oil. The maximum blend quantity of ethanol which is not ignited in the re-entrant type combustion chamber was estimated at approximately 40% of total fuel delivery. So, it is necessary to blend appropriate quantity of a volatility fuel such as alcohol in order to improve combustion.

  • PDF

촉매연소기에서 2단 공급공기와 연료가 NOx 저감에 미치는 연구 (NOx Reduction with Secondary Air and Fuel in a Catalytic Combustor)

  • 정진도;이보영
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.541-549
    • /
    • 2003
  • A basic experimental study was conducted in order to find the optimum combustion control technology to decrease the thermal NO$_{x}$, by applying the catalytic combustion method with natural gas. NO$_{x}$ emission increased with increasing space velocity due to temperature rising in the furnace. In order to overcome the low resistance to high temperature, secondary air was supplied to the CST combustor. The following secondary fuel formed combustible mixture in part, which resulted in steep increase of the exiting temperature of the 2nd catalyst bed. It led to the more generator of NO$_{x}$, 30∼60% of the 1 st catalyst bed. It might be due to the potential increase of thermal NO$_{x}$.

바이오매스 가스화장치를 이용한 합성가스 생산에 있어서 연료조건의 영향 (Effects of Biomass Fuel Conditions on Biomass Ossification)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제48권3호
    • /
    • pp.63-71
    • /
    • 2006
  • A downdraft gasifier was made of stainless steel for biomass gasification. Internal reactor had a 300 mm diameter and 8 air intakes. Three thermocouples were installed to measure the temperature inside the reactor. Three different biomass fuels were provided in the experiments to find out the effects of fuel conditions on gasification processes; charcoals, woodchips, and mixture of woodchip and charcoals. Two different experiments were conducted fer charcoal experiments, small and larger sizes of charcoal fuels. It took about 10 minutes after ignition to generate combustible producer gas when charcoal was f9d, but 20 or more minutes for woodchips. When the gasification was stabilized, the highest temperature was observed just below the combustion zone. The air flow rate for woodchip experiment was provided at 25% of a stoichiometric requirement of combustion, which was within the range of typical air flow rate fer woody biomass gasification. Carbon monoxide concentrations were also within the values reported in the previous studies, ranging 20 to 30% depending on fuel types. It could be seen that fuel size and heating value were very important parameters in biomass gasification. These parameters should be taken into account in operating and designing biomass gasifiers.

2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성 (Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine)

  • 국상훈;박철웅;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

메탄올-디젤기관의 스모크 저감에 관한 연구 (A Study on the Smoke Reduction of Methanol-Diesel Engine)

  • 한성빈;문성수
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2421-2429
    • /
    • 1996
  • The objective of this research is to apply effect of the pre-mixed combustion quantity and smoke emission in diesel engine. According as air fuel ratio is increased, emission of smoke concentration is linearly reduced. As Injection timing is advanced, smoke concentration is remarkably reduced. It is considered to be the primary cause of the increase in the premixed combustible mixture during long ignition delay period with advancing injection timing. Smoke is increased with increasing engine speed, so it is considered to be the primary cause of the increase of the mass of fuel injected. Smoke is decreased according to the increase of methanol volume ratio. It is considered that the primary cause of the increase in the quantity of pre-mixed combustion.

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

다공성세라믹버너의 화염안정화에 관한 연구 (A Study on the Flame Stability of Porous Ceramic Burner)

  • 이도형;윤봉석
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.12-18
    • /
    • 2016
  • Typical boiler system consists of combustion chamber and heat exchanger in one housing, therefore the size of boiler system is large and the heat exchanging efficiency becomes low. At these boiler systems, because the combustible mixture fires as free flame in the combustion chamber, consequently the combusted hot gas heats the heat exchanger only as conductive and convective heat transfer. The present Porous Ceramic Burner concept is that combustion process is occurred at the gaps of the porous ceramic materials, and the heat exchanger is placed in the same porous materials. Therefore we can reduce the boiler size, and we can also use radiative heat transfer from ceramic material with conductive and convective heat transfer from combusted gas throwing the porous materials. The purpose of this study is to search the flame stability ranges at different fuel flow rate and excess air ratio burning in the $Al_2O_3$ ceramic balls. We found out the stable excess air ratio range on given combustion intensity. And we can get clean porous ceramic combustion results compared with free flame.

배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가 (Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes)

  • 하상안
    • 유기물자원화
    • /
    • 제17권3호
    • /
    • pp.27-39
    • /
    • 2009
  • 본 연구는 가연성폐기물, 음식물폐기물 및 하수슬러지를 혼합하여 연료로 제조하여, 연소장치에서 다양한 연소조건에 따라 배출되는 배연가스를 분석하여 연소특성을 조사하였다. CO가스성분은 연소과정에서 불완전연소 부분을 평가하는 가스성분으로서, 연소장치의 실험조건이 온도 $800^{\circ}C$와 공기비 2일 때 가장 낮게 발생하였다. $CO_2$는 시료가 완전 연소되어 최종적으로 발생되는 부산물로서 연소조건이 가장 최적상태인 온도 $800^{\circ}C$와 공기비 2일 때 가장 높은 농도가 발생하였다. $SO_2$ 발생은 시료 중에 황 함유량이 높은 S.1에서 높게 나타났다. NOx는 질소성분이 높은 S.1시료와 온도 $800^{\circ}C$의 조건에서 공기비 m=2의 조건에서 NOx의 발생이 높게 나타났다. HCl가스는 연소과정에서 산소의 촉매 반응을 통해서 분진이나 금속촉매물질과 반응하여 다이옥신류를 발생시키는 전구물질로서 분석결과에서 보면 시료의 Cl함유량이 많은 시료와 동일한 시료에서 온도 $800^{\circ}C$와 공기비 2일 때가 가장 낮은 HCl의 농도가 발생되었다. $NH_3$는 시료의 혼합비율과 온도조건보다는 공기비 2일 때 연소시작 3분 후에 가장 낮게 나타났으며, 연소온도 보다는 공기비가 $NH_3$의 생성에 더 큰 영향을 미치는 것으로 나타났다. $H_2S$ 발생은 시료의 황 함유량이 높은 S.1시료와 하수슬러지나 음식물쓰레기 혼합 비율이 높은 경우 높게 나타났다. 연소실험에서 혼합비율에 따라서 제조된 S.1과 S.2의 시료를 연소한 결과 CxHy농도 무연탄 연소시 발생농도와 비슷하게 나타남으로서, 성형하여 제조된 연료는 보조연료 및 주연료로서 가치가 있는 것으로 평가되었다.