• Title/Summary/Keyword: Combustible characteristics

Search Result 176, Processing Time 0.032 seconds

Performance Analysis of Off-Gas/Syngas Combustor for Thermal Management of High Temperature Fuel Cell System (고온형 연료전지 열관리를 위한 배기가스 연소기 성능시험)

  • Lee, Sang-Min;Lee, Youn-Hwa;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Anode off-gas of high temperature fuel cell still contains combustible components such as hydrogen, carbon monoxide and hydrocarbon. In this study, a catalytic combustor has been applied to the high temperature fuel cell so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study is designed to perform the experimental investigation on the combustion characteristics of the three commercial catalysts with a different composition. Screening tests with three catalysts are preceded before the performance examination since it is necessary to determine the most suitable catalyst for design configuration of the catalytic combustor. The performance analysis shows that methane conversion rate strongly depends on gas hourly space velocity (GHSV) as well as inlet gas temperature. Additionally, the GSHV optimization results show that the optimum GHSV will be in the range between 18,000 $hr^{-1}$ and 36,000 $hr^{-1}$. It is also shown that the minimum inlet temperature of catalytic reaction of methane is from $100^{\circ}C$ to $150^{\circ}C$.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

Autoignition Characteristics of Limonene - Expanded Polystyrene Mixture (Limonene - Expanded Polystyrene 혼합물의 자연발화 특성)

  • 송영호;하동명;정국삼
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In the reutilization process using limonene, the organic solvent to reduce volume of EPS, the AIT was measured with the variation of concentration and volume of mixture, in order to present the fund-mental data on the fire hazard assessment of limonene - EPS mixture at storage and handling. And ignition zone was compared with non-ignition zone. The equation related to AIT, activation energy and ignition delay time, used by the most scientific basis for predicting AIT values, was suggested using linear regression analysis as ln t = 0.704/T-5.819. And the equation related to concentration of mixture and AIT was also suggested to predict ignition hazard of combustible mixture using nonlinear regression analysis as $T_m/=248.32+69.27X+172.60X^2$. It enabled to predict ignition temperature according to variation of ignition delay time and concentration of mixture by the suggested equations.

A Study on the make Fire Scenario for Residential Facility Combustible Materials

  • Kim, Dong-Eun;Lee, Dong-Yeol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.137-143
    • /
    • 2021
  • In the case of residential facilities, general fire scenarios cannot be applied. Becauseit is difficult to quantify due to the types of combustibles and various fire loads. Existing research conducting surveys of combustibles, but research on fire characteristics is insufficient. Therefore, in this study, an Excel macro that can be quantified by experimenting with the HRR experiments of sofa, drawer, mattress, chair, desk and TV, which are typical combustibles. As a result of experimenting 6 loading combustibles in domestic residential facilities by using a furniture calorimeter, values of 2,391.26kW appeared from the sofa, 1,891.80kW from the drawer, 1,778.95kW from the mattress, 1,104kW from the chair, 291kW from the desk, and 135.09kW from the TV. Also, by applying the α value of the fire growth rate by classifying fire-growing speeds at NFPA 72 (National Fire Alarm Code 2007, Annex B), the mattress can be defined as Very Fast, the sofa and drawer Fast, the TV Slow, the desk Slow, and the chair Medium.

Fire-Protective Coating for Polymer Construction Materials using Two-dimensional Nanomaterials (2차원 나노소재를 활용한 고분자 건축자재의 난연코팅기술 개발)

  • Kim, Hanim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.183-190
    • /
    • 2024
  • An environmentally-friendly nanocoating method that effectively adds flame retardant(FR) and gas shielding properties to combustible polymeric construction materials such as flexible polyurethane (PU) foam was studied. Naturally-driven two-dimensional(2D) nanomaterials such as graphene oxide (GO) can exhibit liquid crystalline (LC) properties in aqueous solutions, enabling uniform coatings on the various substrates including 3D-porous foams. LC phase-assisted coating serves as 3D-scaffold, facilitating the introduction of small molecules having antioxidant capabilities such as dopamine which is to form uniformly stacked FR coating. Additionally, the structural characteristics of the 2D-materials can effectively hinder the migration of toxic gases and flammable substances in the gas phase generated during combustion. This LC phase flame retardant coating technology could be a new approach to provide environmentally friendly and effective flame retardant and gas barrier properties to various types of polymeric materials.

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

A Study on the Development of Explosion Proof ESD Detector and Intrinsic Safety Characteristics Analysis (방폭구조 ESD Detector 개발 및 본질안전 특성 분석에 관한 연구)

  • Byeon, Junghwan;Choi, Sang-won
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Article 325 (Prevention of Fire Explosion due to Electrostatic) of the Rule for Occupational Safety and Health Standard specifies that in order to prevent the risk of disasters caused by static electricity, fire, explosion and static electricity in the production process, However, in order to do this, it is absolutely necessary to use a pre-detection technology and a detector for antistatic discharge prediction, which is a precautionary measure by static electricity in a fire / explosion hazard place, but in Korea, And there is no technical standard for the application of the technology of the explosion proof structure of the related equipment. Research methods include domestic and overseas electrostatic discharge detection technology and literature investigation of related equipment explosion proofing technology, domestic and foreign electrostatic discharge detection device production and use situation investigation, advanced foreign technology data analysis and benchmarking. In particular, we sought to verify the results of empirical experiments using electrostatic discharge detection technology through sample purchase and analysis of related major products, development of optimization technology through prototype production, evaluation, and supplementation, and expert knowledge through expert consultation. The results of this study were developed and fabricated two prototypes of electrostatic discharge detector based on the technology / standard related to electrostatic discharge detection technology in Korea and abroad through development of electrostatic discharge detection technology and development and production of detector. In addition, based on the development of electrostatic discharge detection technology, we developed an intrinsic safety explosion proof ib class explosion proof technology applicable to the process of using and handling flammable gas and flammable liquid vapor and combustible dust. In the case of the over voltage and minimum voltage are supplied to the explosion-proof structure ESD detector, check the state of the circuit and the transient and transient currents generated by the coil and capacitor elements during the input and standby of the signal pulse voltage. Explosion-proof equipment-Part 11: Intrinsically safe explosion proof structure The comparative evaluation with the reference curve in Annex A of "i" confirms that the characteristics of the intrinsically safe explosion protection structure are met.

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

Characteristics of Leachate with Passed Time in Expired Landfill (사용종료매립지에서 시간경과에 따른 침출수의 특성)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 1997
  • In this study, we can be obtained the following conclusions about the characteristics of leachate with passed time in the expired landfill. Compared with the expired landfilling H. and S., pH shows a tendency to increase in E., because $NH_3$ is created by anaerobic degradation and dissolved in leachate. The initial BOD and COD of E. and S. are high in similar concentration but H. is low, Since the organics of waste in H. are lower than in E. and S. during landfilling. SS of E. in concentration is increased and very altered, because food of combustible in E. is higher than it in H. and S.. According to passed time, T-N is high in concentration but T-P shows a similar tendency. Heavy metals of leachate is lower than threshold concentrations. If leachate is treated biologically, microbes are not inibitory.

  • PDF

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.