• Title/Summary/Keyword: Combustible characteristics

Search Result 175, Processing Time 0.031 seconds

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness (목재 가연물의 두께에 따른 화염연소와 훈소상태에서의 화재특성)

  • Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • A series of fire tests was conducted to examine the fire characteristics of flaming and smoldering combustion of engineered wood products, which have been widely used for furniture and finishing materials in buildings. The engineered wood products of MDF, plywood, and chipboard were ignited by a radiant cone heater with incident heat flux of $50kW/m^2$. During the fire test, key parameters representing the fire characteristics such as the heat release rate, yield rate of combustion product, and effective heat of combustion were quantified in terms of thickness. The tests show two peak points of HRRPUA due to lateral fire propagation in the initial stage, followed by later fire penetration through the specimen thickness. The mass loss rate of flaming combustion was 5 times higher than that of smoldering combustion, while the CO yield rate of smoldering combustion was 10 times higher than that of flaming combustion. This study can contribute to the understanding of fire behavior of wood combustibles and provide useful data for fire analysis.

RADICAL IGNITION TECHNIQUE IN A CONSTANT VOLUME CHAMBER

  • Park, J.S.;Ha, J.Y.;Yeom, J.K.;Lee, J.S.;Lee, C.J.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.269-274
    • /
    • 2007
  • A prior fundamental study was executed using a constant volume chamber (CVC) to improve the burning characteristics of lean pre-mixture by the injection of active radicals generated in the sub-chamber of the CVC. The Radical ignition (RI) technique shows remarkable progress in the burning velocity and combustible lean limit compared with the results of the spark ignition (SI) technique. The optimum design value of the sub-chamber geometry is near $0.11cm^{-1}$ for the ratio of the total area of the holes to the sub-chamber volume $(A_h/V_s)$. In this study, based on the former experimental results, the additional works have been performed to examine the effects of the geometry change in the number $(N_h)$, the total section area $(A_h)$, and diameter $(D_h)$ of the passage holes on the combustion characteristics in the CVC. Also ambient conditions such as the initial temperature and the initial pressure of the mixture were selected as experimental parameters and the effects of residual gas at the chamber on the combustion characteristics were investigated. As a result, the correlation between the passage hole number and overall passage hole area was grasped. The effects of the initial temperature were significant, but on the other hand, those of the initial pressure were weak. A more detailed analysis on the residual gas is required in the future.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

Characteristics of Household Wastes from Fishing Village in Small Island (소규모 도서지역 어촌의 생활계 쓰레기 발생특성에 관한 연구)

  • Jeong, Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2010
  • Characteristics of household wastes production from fishing village in small island was investigated. Investigation was conducted in August and December to represent seasonal characteristics of summer and winter, respectively. Amount of household wastes production was 0.65 kg/capita·day and this is relatively low value compared with nationwide average. Food wastes, papers, vinyl and plastics are major part of combustible portion in household wastes. Composting is inappropriate method as a final disposal method in terms of C/N ratio calculated from elemental analysis. It is recommended that incineration can be appropriate way as a final disposal method of household wastes because low heating value of household wastes is equivalent to that of crude oil. The fraction of food wastes in household is considerably higher than the values obtained from other residential areas in nationwide. Thus, it is evaluated that household composting devices and vermicomposting facilities are necessary to reduce the amount of food wastes. It also can be evaluated that incineration is optimal method as disposal method of household wastes from fishing village except food wastes.

Identification of Problems and Improvement Measures of Fire Observer Operation in Domestic Manufacturing Industry (국내 제조업 화재감시자 운영의 문제 확인 및 개선방안)

  • Kyung Min Kim;Yongyoon Suh;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.26-35
    • /
    • 2023
  • Sparks cause most fire and explosion accidents in the manufacturing industry during hot work, which ignites surrounding combustible materials. Such incidents lead to high casualties due to suffocation from toxic gases and lack of evacuation. Therefore, the government recently enacted and revised 'The Occupational Safety and Health Act' to prevent fires and explosions at work sites, incorporating legal standards for fire observers, which are important in preventing accidents and the spread of fire during hot work. However, there are notable shortcomings in conducting professional cause analysis of these accidents and in aligning them with advanced foreign legal standards. Additionally, there is a lack of literature review reflecting the manufacturing industry characteristics. Despite the recent enactment and revision of legal standards, gathering sufficient opinions and professional reviews remains insufficient. To address these gaps, interviews were conducted with safety and health workers, analyzing recent fire and explosion causes in domestic manufacturing industries, and reviewing both domestic and international legal standards. Conclusively, proposed improvement measures were centered on the professionalization of fire observer education, enhancing their roles and authority realistically, and improving fire observer placement and operation standards. Consequently, additional 'Occupational Safety and Health Act' standards are necessary for fire observer education and defining the government's role. Second, precise legal standards outlining the role and authority of fire observers are required. Third tailored fire observer arrangements and management standards appropriate for varying work characteristics and company sizes are required. This study emphasizes the importance of supplementing relevant legal standards to prevent fire accidents in the manufacturing industry.

Development of Microbubble Flotation Technique for the Production of High Grade Coal (Microbubble Flotation에 의한 고품위(高品位) 석탄생산(石炭生産) 기술(技術) 개발(開發))

  • Han, Oh-Hyung;Park, Sin-Woong;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.44-52
    • /
    • 2012
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from fixed carbon 20.68% coal. Also, the mineralogical, physical/chemical and liberation characteristics was found with the aim of decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and microbubble column flotation that was appropriate for the processing of fine particles was used with the variation in kinds and quantity of frother, collector and depressant. Also grinding time, air flow rate and feeding rates were examined. As a result of batch flotation, using pulp density 20%, collector DMU-101+dodecyl amine(100 mL/ton), frother pine oil (200 mL/ton), depressant sodium silicate(1 kg/ton), obtained the result of ash rejection 81.55% and combustible recovery 70.23%. In result of microbubble column flotation, the result was ash rejection 83.85% and combustible recovery 70.42% under the condition of pulp density 5%, grinding time 5 min. collector DMU-101+DDA(100 mL/ton), frother AF65(5.4 L/ton), depressant SMP(3.5 kg/ton), wash water(360 mL/min.) and air flow rate(1,197 mL/min.).

Evaluation on Resource Recovery Potential by Landfill Gas Production (매립가스 발생량에 따른 자원화 가능성 평가)

  • Lee, Hae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4679-4688
    • /
    • 2011
  • This study was performed to the municipal waste generation amounts and characteristics for B city in Gangwon province, predicted the methane gas generation rate emitted from landfill, and analyzed the possibility of energy recovery to RDF(Refuse Derived Fuel) using combustible waste. The study results showed that the average bulk density of municipal waste for B city was 144.0 kg/$m^3$, and the average ratios of combustible waste were 36.0 % of paper, 21.6 % of vinyl, and 19.7 % of food waste. respectively. In the experiment for heating value, high and low heating value(moisture) was measured to 3,471 $kca{\ell}$/kg and 2,941 $kca{\ell}$/kg, respectively. After the prohibition of burying of food waste in landfill, the heating value of municipal waste was dramatically increased due to increase of the ratio of paper, vinyl, and plastic waste. The prediction results of methane gas generation rate emitted from landfill showed that the gas generation rate is increasing to 2,505.7 CH4 ton/year in 2021. After then, the rate is decreasing gradually. When the RDF facility is installed, the rate is decreasing after peaking at 1,956.9 CH4 ton/year in 2013. The generation rate of LFG emitted from waste landfill of B city was analyzed to 9.92 $m^3$/min, similar to 10.11 $m^3$/min for other city.

A Study on the Use of Low-Grade Domestic Anthracite by Anthracite - Bituminous Coal Blend Combustion in a Fluidized Bed Combustor (유동층 연소로에서 유.무연탄 혼합 연소법을 이용한 국내산 저질 무연탄의 활용에 관한 연구)

  • 정종현;조상원
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.267-276
    • /
    • 1997
  • It has been studded that combustion and the production of air pollution of anthracite - bituminous coal blend In a fluidized bed coal combustor, The objects of thIns study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and Imported h19h calorific bltununous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010kca1/kg and the Imported high grade bituminous coal with beating value of 6,520kca1/kg. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300sc1h which was the fastest. It has been found that $O^2$ and $CO^2$ concentration were reached steady state at about 100 minute. It has been found that $O^2$ concentration decreased and $CO^2$ concentration increased as the height of fluidlzed bed Increased. It was found that splash zone was mainly located from 25cm to 35cm above distributor. Also, as anthracite traction Increased, the mass of elutrlatlon particles Increased, and $CO^2$ concentration decreased. As gk flow rate Increased,$O^2$ concentration decreased and $CO^2$ concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approldmately high In the case of One Particles. As anthracite traction and k now rate Increased, elutriation ratio Increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was Increased. Regardless of anthracite fraction, size distribution of Ued material from discharge was almost constant. Over bed temperature 85$0^{\circ}C$ and excess air 20% , the difference of combution efficiencies were little. It is estimate that the combustion condition In anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 85$0^{\circ}C$, the excess air 20%.

  • PDF

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF