• Title/Summary/Keyword: Combustible Waste

Search Result 97, Processing Time 0.028 seconds

A Study on Composition of Municipal Solid Wastes and Characteristics of Leachate in In-Cheon Sanitary Landifil Site (인천시 위생매립지 쓰레기 조성 및 침출수 특성에 관한 연구)

  • 박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 1992
  • This study was performed to investigate the seasonal variation of the composition of domestic solid wastes and the characteristics of the leachate sampled in In-Cheon sanitary landfill site. The results were as follows 1. Combustible part was larger than incombustible part of the domestic solid wastes in spring and sumer. 2. The food waste was major source of solid wastes in In-Cheon city as 36.5%, and its variation by seasons was negligible. 3. BOD of the leachate was in the range of 853~7, 350mg/l, and fluctuated by seasons. 4. The mean of COD$_{cr}$ Was 5, 044mg/l, the mean of COD$_{Mn}$ was 2, 212mg/l. Namely, the method by $K_{2}Cr_{2}O_{7}$ was more sensitive than the method by KMnO$_{4}$. 5. TOC was in the range of 773~3, 958mg/l, it was lower than BOD.

  • PDF

Effect of Household Garbage on the SRF Biomass - Based on the B city (가정 폐기물이 SRF 바이오매스에 미치는 영향 - B시를 중심으로)

  • Park, Jae Woo;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • This study investigated the biomass content of fluff type SRF(Solid refuse fuel) operated in B city according to the physical composition. As a result of analyzing the physical composition of SRF, it was investigated that papers 25.2%, fiber 15.1%, vinyl·plastics 42.6%, woods 9.4%, rubbers 1.5%, diapers 3.2% and incombustibles 3.0%. The average of ash and combustible content of SRF was 10.5% and 89.5%, and the higher the proportion of paper and wood, the lower proportion of ash. In addition, the biomass of SRF is 24.9%~58.0%, with an average of 42.6%.

Case Study on NOx Emissions from Cement Kiln before and after Applying Multi-stage Combustion Technology (다단연소 기술 적용 전후 시멘트 소성설비의 NOx 배출 사례 연구)

  • Jae-Won, Choi;Ju-Ik Back;Jang-Jung Kim;Phil-Sung Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • The cement industry has been contributing to solve the wastes problem by using various combustible wastes as alternative fuel to replace natural coal. To use more alternative fuels such as waste plastics, in the cement manufacturing process, it is necessary to stably burn alternative fuels and reduce air emissions such as NOx. This study is a case study on the multi-stage combustion calciner process, which is a technology that decreases the amount of NOx while increasing the use of alternative fuels. This study is a case study on the multi-stage combustion process, a technology that reduces the amount of harmful air emissions such as NOx while increasing the use of alternative fuels. Along results of comparing before and after applying the technology to actual cement manufacturing facilities, the amount of coal consumption decreased by 38 %, waste plastics consumption increased by 122 %, and NOx emissions decreased by 17 %. Results show that increasing the use of alternative fuels and reducing NOx emissions by multi-stage combustion is effective.

Cost-Benefit Analysis by Resource Recovery Facility for Municipal Waste -Focus on Gangwon Province- (생활폐기물 자원화시설의 편익분석 -강원도 중심으로-)

  • Han, Young-Han;Lee, Hae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2833-2845
    • /
    • 2012
  • In this study, the amount of waste resource that could be recovered was analyzed. The installation and operation costs of waste resource recovery for both single- and multi-regional facility were calculated, and compared with the costs of landfill to investigate the feasibility of them. RDF(Refuse Derived Fuel) process and resource recovery by incineration process were considered as waste resource recovery facility. And, the multi-regions for cost analysis were established on the basis of the proper generation rate of municipal waste with the consideration of combustible ratio. The study results showed that single region facility for both RDF and incineration process has no economic benefit, compared with the landfill method. For the multi-regional facility, RDF process could save a large cost than the landfill method, but the incineration facility couldn't. Separate from the economic benefits, the waste resource recovery should be importantly considered when considering the depletion of fossil fuel, global warming, environmental toxicity, and the enormous expenses due to social conflict and confuse. When the CDM(Clean Development Mechanism) is vitalized in the near future, the additional economic benefits by CERs(Certified Emission Reductions) could be expected. CERs for RDF facility is corresponding to about 256.5 billion won, and CERs for incineration facility is corresponding to about 54 and 77.4 billion won for single- and multi-regional facility, respectively.

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

An Experimental Study on the Developement of Bomb Calorimeter (발열량 측정장치 개발에 관한 연구)

  • Kim, Hyung-Man;Son, Young-Mog;Lee, Dong-Je
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.60-65
    • /
    • 2001
  • Bomb calorimeter was developed for measuring the calorific value of combustible matter such as wastes. The calorimeter consist of bomb, stirred-water type bucket, thermometer and ignition circuit. Operation and performance of the calorimeter have been tested experimentally. In the present study, calorific values of light oil, lamp oil and bunker C oil is measured using the bomb calorimeter. Mass of the sample is fixed at lg, and oxygen pressure in the bomb is used as an experimental parameter. Sample in the oxygen bomb is burned with electrically heated Ni-Cr wire of 100mm in length, and temperature of water in the bucket become increased by $5^{\circ}C$ during about 30min. Calorific value of the sample is calculated with the temperature difference of water. Combustion tests, such as the record of temperature history and the inspection of remnants, are performed at 4, 6, 8 and 10 atm of the oxygen pressure. From the test results, oxygen pressure in the bomb must be over 10atm for complete combustion.

  • PDF

An Experimental Study on the Developement of Bomb Calorimeter (발열량 측정장치 개발에 관한 연구)

  • Lee, Dong-Je;Son, Young-Mog;Kang, Han-Saem;Kim, Hyung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.23-30
    • /
    • 2001
  • Bomb calorimeter was developed for measuring the calorific value of combustible matter such as wastes. The calorimeter consist of bomb, stirred-water type bucket, thermometer and ignition circuit. Operation and performance of the calorimeter have been tested experimentally. In the present study, calorific values of light oil, lamp oil, benzoic acid, ethyl alcohol and methyl alcohol is measured using the bomb calorimeter. Mass of the sample is fixed at 19, and oxygen pressure in the bomb is used as an experimental parameter. Sample in the oxygen bomb is burned with electrically heated Ni-Cr wire of 100mm in length, and temperature of water in the bucket become increased by $2{\sim}5^{\circ}C$ during about 30min. Calorific value of the sample is calculated with the temperature difference of water. Combustion tests, such as the record of temperature history and the inspection of remnants, are performed at 6, 8 and 10 atm of the oxygen pressure. From the test results, oxygen pressure in the bomb must be over 10atm for complete combustion.

  • PDF