• Title/Summary/Keyword: Combined loads

Search Result 487, Processing Time 0.022 seconds

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

Buckling analysis of structures under combined loading with acceleration forces

  • Wang, Wenjing;Gu, Randy
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1051-1067
    • /
    • 2014
  • The structures of concern in this study are subject to two types of forces: dead loads from the acceleration imposed on the structures as well as the installed operation machines and the additional adjustable forces. We wish to determine the critical values of the adjustable forces when buckling of the structures occurs. The mathematical statement of such a problem gives rise to a constrained eigenvalue problem (CEVP) in which the dominant eigenvalue is subject to an equality constraint. A numerical algorithm for solving the CEVP is proposed in which an iterative method is employed to identify an interval embracing the target eigenvalue. The algorithm is applied to four engineering application examples finding the critical loads of a fixed-free beam subject to its own body force, two plane structures and one wide-flange beam using shell elements when acceleration force is present. The accuracy is demonstrated using the first example whose classical solution exists. The significance of the equality constraint in the EVP is shown by comparing the solutions without the constraint on the eigenvalue. Effectiveness and accuracy of the numerical algorithm are presented.

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

Aerodynamic mitigation of wind loads on a large-span cantilevered roof: A combined wind tunnel and CFD analysis

  • Chen Fubin;Wang Weijia;Yang Danqing;Zhenru Shu
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • Large-span cantilevered roof represents a unique type of structure that is vulnerable to wind loads. Inspired by the need to maximumly reducing the rooftop wind loads, this study examined the feasibility of positioning vented slots on the leading edge, and the effectiveness of such aerodynamic mitigation measures are assessed via both physical and numerical simulations. The reliability of numerical simulation was evaluated via comparisons with the wind tunnel tests. The results indicated that, the variation of venting hole arrangement can cause significant change in the rooftop wind load characteristics. For the cases involved in this study, the maximum reduction of mean and peak wind suction coefficients are found to be 9% and 8% as compared to the original circular slot without venting holes. In addition, the effect of slot shape is also evident. It was shown that the triangular shaped slot tends to increase the wind suction near the leading edge, whereas the hexagonal and octagonal shaped slots are found to decrease the wind suction. In particular, with the installation of octagonal shaped slot, the maximum reduction of wind suction coefficients near the leading edge reaches up to 31% as compared to the circular shaped slot, while the maximum reduction of mean wind suction coefficients is about 30%.

Modeling for the strap combined footings Part II: Mathematical model for design

  • Yanez-Palafox, Juan Antonio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.109-121
    • /
    • 2019
  • This paper presents the second part of the modeling for the strap combined footings, this part shows a mathematical model for design of strap combined footings subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing for one and/or two property lines of sides opposite restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The first part shows the optimal contact surface for the strap combined footings to obtain the most economical dimensioning on the soil (optimal area). The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. A numerical example is presented to obtain the design of strap combined footings subject to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems and it can also be used for rectangular and T-shaped combined footings.

On the Wave Loads on a Large Volume Offshore Structure (대형해양구조물에 작용하는 파랑하중에 관하여)

  • 홍도천;홍은영;이상무
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 1987
  • The first order mation responses of a floating structure and the hydrodynamic forces in regular waves are obtained by means of the linear potential theory. The first order potential is obtained directly from the numerical solution of the improved Green integral equation which is characterized by the combined surface distribution of sources and normal doublets. The mean second order wave drift force is also calculated by means of the near field method. It seems that the present method gives more accurate numerical results than other methods and the agreement between numerical and experimental results appears to be satisfactory.

  • PDF

Analysis of Stresses on Buried Natural Gas Pipeline Subjected to Ground Subsidence (매설 천연가스배관의 지반침하에 의한 응력 분석)

  • 김형식;김우식;방인완;오규환;홍성호
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.54-64
    • /
    • 1998
  • This study was initiated to examine the stress and deformation characteristics of the pipelines which were subjected to various environmental conditions in order to confirm their integrity. As the part of them, this paper presents the analysis results for the effect of ground subsidence combined with main loads on buried natural gas pipelines. The ground subsidence which can occur for buried gas pipeline has been classified to the three cases. Finite element method was used to analyze the effect of ground subsidences on pipeline of 26 inch(0.660 m) and 30 inch(0.762 m) diameter used as high pressure ($70 kg_f/cm^2(6.86 MPa)$) main pipelines of KOGAS. This paper shows the result of stress analysis for the pipelines subjected to those three case ground subsidence. Comparing these results with safety criterion of KOGAS(0.9 $\sigma_y$), maximum allowable settlement and loads have been calculated.

  • PDF

The Development of Ultimate Compressive Strength for Ship Curved Plates (선체곡판의 압축최종강도 설계식의 개발)

  • 박영일;권용우;백점기;이제명;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.101-109
    • /
    • 2004
  • Ship structures is thin-walled structures and she has lots of curved platings. In these days, lots different kinds of closed-formulas are development for ultimate strength of flat plate but for curved panels, there are not enough study or papers for this field. In this study, the ultimate strength characteristics for ship curved plates are studied. The ship plating is generally subjected to combined in-plane and lateral pressure loads. In-plane loads included biaxial compression/tension and edge shear. This is first report about the developing of ultimate compressive strength for ship curved plating. A closed-form formula for predicting the ultimate compressive strength of curved plates are empirically derived by curve fitting based on the computed results. The results and insights developed in the present study will be useful for damage tolerant design of curved plated structures.

  • PDF

Moment Magnifier Method for Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.211-216
    • /
    • 2000
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As the result, the creep factor was developed to epitomizes with creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples are shown for verification of proposed design method.

  • PDF