• Title/Summary/Keyword: Combined forming

Search Result 235, Processing Time 0.022 seconds

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

Multi-Point Dieless Sheet Forming Technology Combined with Fluid forming (유체성형과 결합한 다점 무금형 판재 성형기술)

  • 박종우;홍예선;양승훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.58-61
    • /
    • 2002
  • A new concept of dieless sheet forming technology is proposed in this study to overcome the drawback of conventional dieless forming technology. For this purpose, dual points contact of the conventional punch system, which is a primary cause of surface defects, is replaced to single point contact using technology combined with fluid forming. It is expected that the advanced system may lead to easy displacement control of multi-punch elements, reducing surface defects, and increasing decision and forming limits. The reduced number of punch elements also saves the cost of the equipment. In addition, the new technology can be utilized for deep drawing as well as two- or three-dimensional curved surface forming, and thereby become multi-functional and multi-purpose differently from the conventional technology.

  • PDF

Process Development of the Large-Size Dome Shaped Forging-Products Using the Incremental and Combined Forming Method (점진적 복합성형법을 이용한 대형 돔형 단조품의 공정개발)

  • 박치용;양동열;은일상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1685-1696
    • /
    • 1994
  • In this paper, a new forming process of the large-size forgings within the limit of forming loads is developed by introducing the incremental forging method and combined forming method. For the development of the forming process, various related processes are proposed and modelling experiments of plasticine and corresponding numerical simulation ate carried out. Thus, an optimal process considering the productivity and economical efficiency is recommended from the study of formability and forming loads, etc. The selected process is subjected to a modelling experiment of lead and 1/7 scale prototype experiment of the real material so as to verify the effectiveness of a selected process as well as to determine the design parameters. The developed process is then applied the forging product of dome shape. Dome-shaped forgings can be produced by the developed process within the limit loads and with the simple tools.

A Study on the Forming Characteristics of Radial Extrusions Combined with Forward Extrusion (전방압출과 연계된 레이디얼압출의 성형특성에 관한 연구)

  • 장용석;황병복
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.242-248
    • /
    • 2000
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. Radial Extrusion is usually used in order to produce complex parts, which is combined with upsetting and/or forward and backward extrusion. Typical parts that fall into this category include cross pieces for universal joints, key-shaft type parts, tube fittings, and differential gears. In this paper, the forming characteristics of radial extrusion combined with forward extrusion is investigated by comparing the punch and mandrel loads. The design factors during radial extrusion combined with forward extrusion are applied to the simulation to see how much those factors have effect on the forming loads. The rigid-plastic FEM is applied to the simulation.

  • PDF

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

Analysis and Design of a Forming Porcess for Combined Extrusion with Aluminum AIIoy 7075 (알루미늄 7075 복합압출재에 대한 공정해석 및 설계)

  • 김진복;변상규
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.446-455
    • /
    • 1997
  • A Combined extrusion operation consists of forward and backward extrusion forming and it is possible to make the process be simple by employing it. But the metal flow pattern induced by the operation is hard to analyze accurately because the flows are non-steady, which have at least two directions dependent upon each other. So engineers in the industrial factories had conducted the two extrusion operations separately. A new process was designed by the industrial expert for forming of an alu-minum preform using the combined extrusion operation. In this study, experiments and finite element analysis was carried out to determine the process parameters. Through the preliminary experiment, it was shown that warm forming condition was more desirable than cold or hot ones. And optimal shape of initial billet could be also determined. From the compatibility test, bonde-lube was chosen as the optimal lubricant and 20$0^{\circ}C$ as the material temperature by the inspection of micro-structure. The operation was simulated by the rigid-plastic finite element method to examine the metal flow. Disap-pearing of dead metal zone was observed as the punch fell down and desirable shape was obtained from the one operation. As a result of this study, 7 operations could be reduced and 225% of material saved.

  • PDF

FORMABILITY OF COMBINED STRETCHING PROCESSES WITH SIMULTANEOUS COMPRESSION

  • Muranaka T.;Goto Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.193-197
    • /
    • 2003
  • In order to restrain the local necking during stretching of sheet metals, the combined stretching processes with simultaneous compression are proposed. The combined stretching tests with two types of compression to top of the cup were carried out using the pure aluminum sheets; (1) stroke control loading process and (2) pinpoint loading process. It was clarified that the metal flow in the cross-section of the cup is affected significantly both by the magnitude of load and the stroke in the compression process. It was also found that the local necking can be restrained effectively by the metal flow from center of the cup and therefore the forming limit is improved.

  • PDF

A Study on Process Improvement of Combined Extrusion with Aluminum Alloy 7075 (유한요소 시뮬레이션을 이용한 알루미늄 7075 복합 압출재에 대한 공정개선 연구)

  • 김진복;이지억;강범수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.197-205
    • /
    • 1996
  • A combined extrusion process studied here consists of forward and backward extrusion, and it is formed in single operation. The metal flow involved in the operation has appeared to be difficult to analyze accurately because of mixed directions of the flow. In this study, conventional two operations of a forward and a backward extrusions is transformed into one operation of mixed extrusion. A process designed by an industry expert is simulated by the rigid-plastic finite element method to investigate the metal flow and defects. In addition to the FEM simulation, experimental analysis has been carried out to confirm the design in industry, which includes material characterization, preliminary expriment, and whole experimental forming operation. The experimental results show that warm forming of extrusion is more desirable than cold working and hot forming in view of grain growth. Also two conditions of lubrication between workpiece and die has been investigated.

  • PDF

Forming Characteristics of Magnesium Alloy in Cup-Rod Combined Extrusion Process (AZ31B 마그네슘 합금의 Cup-Rod 복합압출 성형특성 연구)

  • Yoon, D.J.;Kim, E.Z.;Cho, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.70-73
    • /
    • 2007
  • The forming characteristics of cup-rod combined extrusion process were investigated with process parameter change. Simultaneous forward rod extrusion and backward cup extrusion was conducted with magnesium alloy, AZ31B. Process parameters such as forward extrusion ratio, backward extrusion ratio, and working temperature were controlled in a specific region and the effects of the parameter change were examined. Surface crack was developed in a certain state of the process parameters combination. The crack-free forming limit of the alloy in the combined process was disclosed by the parameter study. The microstructures of the initial and extruded workpieces were observed.

  • PDF