• Title/Summary/Keyword: Combined feature

Search Result 508, Processing Time 0.033 seconds

Image retrieval using block color characteristics and spatial pattern correlation (블록 컬러 특징과 패턴의 공간적 상관성을 이용한 영상 검색)

  • Chae, Seok-Min;Kim, Tae-Su;Kim, Seung-Jin;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a new content-based image retrieval using a block color co-occurrence matrix (BCCM) and pattern correlogram. In the proposed method, the color feature vectors are extracted by using BCCM that represents the probability of the co-occurrence of two mean colors within blocks. Also the pattern feature vectors are extracted by using pattern correlogram which is combined with spatial correlation of pattern. In the proposed pattern correlogram method. after block-divided image is classified into 48 patterns with respect to the change of the RGB color of the image, joint probability between the same pattern from the surrounding blocks existing at the fixed distance and the center pattern is calculated. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

  • PDF

An Input Feature Selection Method Applied to Fuzzy Neural Networks for Signal Estimation

  • Na, Man-Gyun;Sim, Young-Rok
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.457-467
    • /
    • 2001
  • It is well known that the performance of a fuzzy neural network strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural network and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PCA), genetic algorithms (CA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods.

  • PDF

Content-based Image Retrieval Using Color and Chain Code (색상과 Chain Code를 이용한 내용기반 영상검색)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2000
  • In this paper, we proposed a content-based image retrieval method using color and object's complexity for indexing of image database. Generally, the retrieval methods using color feature can not sufficiently include the spatial information in the image. So they are reduced retrieval efficiency. Then we combined object's complexity which extracted from chain code and the conventional color feature. As a result, experiments shooed that the proposed method which considers the shape feature improved performance in conducting content-based search.

  • PDF

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

Measuring Logistics Quality in Parcel Delivery Service (택배 산업에서의 물류 서비스 품질 측정)

  • 최성운;백봉기
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Today, the size of a parcel delivery service market, which is a part of logistics, at home and abroad has been extended rapidly and its growth rate is expected to increase hereafter. At this point, when service is applied strategically in a parcel delivery service, we need to understand the feature of logistics service quality by view of customer differentiation. In this study, we try to constitute a model of the feature of logistics service, which is combined five features of service quality (Responsiveness, Empathy, Reliability, Accuracy and Tangibility) based on measuring model of SERVQUAL with logistics service, and to know the feature of logistics service from parcel delivery service by jobs with statistical tool.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Identification of Unknown Remanent Magnetization in the Ferromagnetic Ship Hull Utilizing Material Sensitivity Information Combined with Magnetization Modeling

  • Kim, Nam-Kyung;Jeung, Gi-Woo;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • This paper presents a magnetization modeling method combined with material sensitivity information to identify the unknown magnetization distribution of a hull and improve the accuracy of the predicted fields. First, based on the magnetization modeling, the hull surface was divided into three-dimensional sheet elements, where the individual remanent magnetization was assumed to be constant. For a fast search of the optimum magnetization distribution on the hull, a material sensitivity formula containing the first-order gradient information of an objective function was combined with the magnetization modeling method. The feature of the proposed method is that it can provide a stable and accurate field solution, even in the vicinity of the hull. Finally, the validity of the method was tested using a scale model ship.

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

Reviving GOR method in protein secondary structure prediction: Effective usage of evolutionary information

  • Lee, Byung-Chul;Lee, Chang-Jun;Kim, Dong-Sup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.133-138
    • /
    • 2003
  • The prediction of protein secondary structure has been an important bioinformatics tool that is an essential component of the template-based protein tertiary structure prediction process. It has been known that the predicted secondary structure information improves both the fold recognition performance and the alignment accuracy. In this paper, we describe several novel ideas that may improve the prediction accuracy. The main idea is motivated by an observation that the protein's structural information, especially when it is combined with the evolutionary information, significantly improves the accuracy of the predicted tertiary structure. From the non-redundant set of protein structures, we derive the 'potential' parameters for the protein secondary structure prediction that contains the structural information of proteins, by following the procedure similar to the way to derive the directional information table of GOR method. Those potential parameters are combined with the frequency matrices obtained by running PSI-BLAST to construct the feature vectors that are used to train the support vector machines (SVM) to build the secondary structure classifiers. Moreover, the problem of huge model file size, which is one of the known shortcomings of SVM, is partially overcome by reducing the size of training data by filtering out the redundancy not only at the protein level but also at the feature vector level. A preliminary result measured by the average three-state prediction accuracy is encouraging.

  • PDF