• Title/Summary/Keyword: Combined differential algebraic equation

Search Result 9, Processing Time 0.018 seconds

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

PARALLEL OPTIMAL CONTROL WITH MULTIPLE SHOOTING, CONSTRAINTS AGGREGATION AND ADJOINT METHODS

  • Jeon, Moon-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.215-229
    • /
    • 2005
  • In this paper, constraint aggregation is combined with the adjoint and multiple shooting strategies for optimal control of differential algebraic equations (DAE) systems. The approach retains the inherent parallelism of the conventional multiple shooting method, while also being much more efficient for large scale problems. Constraint aggregation is employed to reduce the number of nonlinear continuity constraints in each multiple shooting interval, and its derivatives are computed by the adjoint DAE solver DASPKADJOINT together with ADIFOR and TAMC, the automatic differentiation software for forward and reverse mode, respectively. Numerical experiments demonstrate the effectiveness of the approach.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

Calculation model for layered glass

  • Ivica Kozar;Goran Suran
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.519-530
    • /
    • 2023
  • This paper presents a mathematical model suitable for the calculation of laminated glass, i.e. glass plates combined with an interlayer material. The model is based on a beam differential equation for each glass plate and a separate differential equation for the slip in the interlayer. In addition to slip, the model takes into account prestressing force in the interlayer. It is possible to combine the two contributions arbitrarily, which is important because the glass sheet fabrication process changes the stiffness of the interlayer in ways that are not easily predictable and could introduce prestressing of varying magnitude. The model is suitable for reformulation into an inverse procedure for calculation of the relevant parameters. Model consisting of a system of differential-algebraic equations, proved too stiff for cases with the thin interlayer. This novel approach covers the full range of possible stiffnesses of layered glass sheets, i.e., from zero to infinite stiffness of the interlayer. The comparison of numerical and experimental results contributes to the validation of the model.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.