• Title/Summary/Keyword: Combined controller

Search Result 387, Processing Time 0.03 seconds

Generation of Control Signals in High-Level Synthesis from SDL Specification

  • Kwak, Sang-Hoon;Kim, Eui-Seok;Lee, Dong-IK;Baek, Young-Seok;Park, In-Hak
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.410-413
    • /
    • 2000
  • This paper suggests a methodology in which control signals for high-level synthesis are generated from SDL specification. SDL is based on EFSM(Extended Finite State Machine) model. Data path and control part are partitioned into representing data operations in the from of scheduled data flow graph and process behavior of an SDL code in forms of an abstract FSM. Resource allocation is performed based on the suggested architecture model and local control signals to drive allocated functional blocks are incorporated into an abstract FSM extracted from an SDL process specification. Data path and global controller acquired through suggested methodology are combined into structural VHDL representation and correctness of behavior for final circuit is verified through waveform simulation.

  • PDF

A Study on Operation Zone of Adaptive Distance Relay on Transmission Line Connected UPFC Between Kangjin and Jangheung (UPFC가 연계 된 강진-장흥 송전선로 보호용 거리계전기의 동작특성에 관한 연구)

  • Lee, Seung-Hyuk;Jung, Chang-Ho;Kim, Jin-O;Jung, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.305-307
    • /
    • 2003
  • This paper presents an apparent impedance calculation procedure for distance relaying of transmission line involving FACTS (Flexible AC Transmission System) devices, particularly the UPFC (Unified Power Flow Controller), between Kangjin and Jangheung in Korea. With the changes of UPFC's parameters, the measurement and protective range (trip boundaries) of the adaptive distance relay can also be changed. So, it is the most important part in the field of system protection to analyze the operating characteristic of relaying system. The presence of UPFC significantly affects the trip boundaries which are also adversely affected by fault resistance combined with remote end infeed. This paper presents the apparent impedance calculations and the distance relay setting characteristics for faults involving the UPFC in the KEPCO system.

  • PDF

A Programmable-Dynamometer Control For Propulsin system combined Testing (추진장치 조합시험을 위한 프로그램어블 다이나모메터 제어)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Kang, Seung-Wook;Lee, Hun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.180-183
    • /
    • 2005
  • A programmable dynamometer is the proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction moter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.

  • PDF

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

High Speed Direct Current Control for the 8/10 Bearingless SRM (8/10 베어링리스 SRM의 고속 직접전류제어)

  • Guan, Zhongyu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Novel 8/10 bearingless switched reluctance motor, which can control rotor radial positions with magnetic force, is proposed. The motor has combined characteristics of switched reluctance motor and magnetic bearing. This paper proposes a air-gap control system method of suspending force control in a bearingless switched reluctance motor (BLSRM). The proposed radial force control scheme is independent to the torque winding current. A PI direct current control (DCC) controller and look-up table are used to maintain a constant rotor air-gap. From the analysis and the experimental results, it is shown that the proposed strategy is effective in realizing a naturally decoupled radial force control of BLSRM.

A Design of Optimal Controller with Friction Reduction of Linear Motor-based Transfer System via Lift-force Control

  • Seo, Jung-Hyun;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-209
    • /
    • 2006
  • A linear motor based transfer vehicle is significantly focused as transportation systems in marine terminals for the future. We propose a control method for the systems to hence mass reduction and propulsion effects at a starting point by using a lift-force mechanism. This method is newly based on a combined levitation-and-propulsion power by a lift and thrust force of a permanent magnet linear synchronous motor (PMLSM), which is carried out by a decoupled control. We exam that our proposed control largely compensates the vehicle weight, reduces friction effect of the system, and increases its velocity. Consequently, this result contributes numerous productivity and economical efficiency for the port systems.

  • PDF

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

Monitoring and On-Line Fault Diagnosis for the Automation of a Concrete Plant (콘크리트 플랜트의 자동화를 위한 감시 및 온-라인 고장진단에 관한 연구)

  • Kong, Young-J.;Chang, Tae-G.;Yang, Won-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.258-260
    • /
    • 1993
  • This paper presents an on-line monitoring and control system designed for the automation of a Concrete plant. The system is based on the combined structure composed of a general purpose PLC (Plogrammable Logic Controller) and a personal computer. Simulation results are ahem to illustrate the system operation. Preconstructed rules are applied to the plant data for the diagnosis of the weighing process in the simulation.

  • PDF

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF