• Title/Summary/Keyword: Combined Sewer Overflows(CSOs)

Search Result 48, Processing Time 0.031 seconds

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs (CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용)

  • Hong, Won-Pyo;Chung, Eun-Sung;Lee, Joon-Seok;Kim, Kyung-Tae;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

PREDICTION OF COMBINED SEWER OVERFLOWS CHARACTERIZED BY RUNOFF

  • Seo, Jeong-Mi;Cho, Yong-Kyun;Yu, Myong-Jin;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.62-70
    • /
    • 2005
  • Pollution loading of Combined Sewer Overflows (CSOs) is frequently over the capacity of a wastewater treatment plant (WWTP) receiving the water. The objectives of this study are to investigate water quality of CSOs in Anmyun-ueup, Tean province and to apply Storm Water Management Model to predict flow rate and water quality of the CSOs. The capacity of a local WWTP was also estimated according to rainfall duration and intensity. Eleven water quality parameters were analyzed to characterize overflows. SWMM model was applied to predict the flow rate and pollutant load of CSOs during rain event. Overall, profile of the flow and pollutant load predicted by the model well followed the observed data. Based on model prediction and observed data, CSOs frequently occurs in the study area, even with light precipitation or short rainfall duration. Model analysis also indicated that the local WWTP’s capacity was short to cover the CSOs.

Analysis of Storm Water Run-off Characteristics to Evaluate the Intercepted Volume of CSOs during Wet Weather (강우시 합류식 하수관거의 월류수 차집용량 산정을 위한 유출특성 분석)

  • Choi, Sung-Hyun;Choi, Seung-Chol;Kim, Byoung-Ug;Rim, Jay-Myoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.320-330
    • /
    • 2004
  • Most of domestic city is served combined sewer system among various sewer system like as separate sanitary, combined sewer system and storm sewers. During the wet weather, sewer and rainfall have been overflowed because it is over capacity of the combined sewer system; that is called combined sewer overflows(CSOs) This research was carried out to investigate runoff characteristics of combined sewer and to evaluate the effective CSOs volume in Hong-Chun gun. During wet weather, SS load of first rainfall at H-1, H-2, and H-3 were 600kg/event, 370kg/event, and 289kg/event, respectively. 55 load of second rainfall were 216kg/event, 113kg/event, and 37.2kg/event. When the first rainfall, event mean concentrations(EMCs) at each site were 702mg/L, 816mgjL and 861.5mg/L. The second rainfall's event mean concentrations(EMCs) were 99.9gm/L, 161.9mg/L, 103.6mg/L. Rrst flush coefficient b at each site were 0.237,0.166, and 0.151. When the first rainfall, the flow containing 80% of pollutant mass of CSOs at each site were 0.55, 0.23, 0.48 in first rainfall, respectively. The case of second rainfall were 0.79, 0.83, 0.81. Most of all, characteristics of rainfall like as analysis of first-flush, CSOs volume, pollutant loadings is investigated to decide intercepted volume for control of CSOs.

Characterization of Combined Sewer Overflows from a Small Urban Watershed and Determination of Optimum Detention Volume (소규모 도시유역 합류식 하수관거 월류수 특성화 및 최적 저류지 용량 결정)

  • Jo, Deokjun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.314-320
    • /
    • 2006
  • Diffuse pollution from an urban area contributes to the significant pollution loading to a receiving water body. In this paper, rainfall runoffs from an urban basin with combined sewer systems located in the city of Daejeon were monitored to measure the rainfall runoff discharge rates and pollutant concentrations. Strong first flush effects were observed for all monitored rainfall runoffs. The first flush effects were closely related to rainfall intensity, while suspended solids were closely related to pollutant constituents. The observed averaged Event Mean Concentrations (EMCs) of Combined Sewer Overflows (CSOs) were 536.1 mg SS/L, 467.7 mg CODcr/L, 142.7 mg BOD/L, 16.5 mg TN/L, and 13.5 mg TP/L. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on suspended solid concentration. In this study, retainment of the first flush equivalent to 5mm of precipitation could reduce diffuse pollution loading induced by CSOs to a receiving water body by up to 80% of suspended solid loading.

Effects of Combined Sewer Overflows According to Drainage Basin Types (유역형상에 따른 합류식 하수도의 월류부하량 추정)

  • Lee, Cheol-Kyu;Hyun, In-Hwan;Jeong, Jeong-Youl;Shim, Jae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.21-26
    • /
    • 2004
  • It is muck important to determine the intercepting capacities as measures for reducing the load of contamination influenced by CSOs during wet weather period. Intercepting and treating the whole rainfalls can be best measured for reducing the contamination load, but it is not desirable in view of scale and preservation of the wastewater treatment facilities. This study analyzed the quantity and quality of the water in the combined sewer by method of changing the type and size of drainage basin and intercepting capacities in rainfalls, estimate the influence the other CSOs at the change of planned intercepted quantity, and compared the degree of contamination load between the combined system and separate system by examining the influence of the other CSOs at the change of planned intercepted quantity.

Pattern Analysis of CSOs Generation in a Small Rural City and Control Schemes (농촌 소도시의 CSOs 발생패턴분석 및 관리대책에 관한 연구)

  • Kim, Youngchul;An, Ik-Sung;Lee, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.543-550
    • /
    • 2007
  • In this study, combined sewer overflows (CSOs) from five independent rainfall events in rural city area were collected and investigated. First flush effect in sewage pumping station located near the WWTP was retarded 30 to 60 minutes from booster pumping station. The ratios between SS, COD and TP concentrations prior to rainfall and peak concentrations during the period of rainfall were highly increased but nitrogen was relatively constant, which indicates that it is not associated with particles washed off from the surface of watershed. Mass balance results show that 30% of CSO was generated from booster pump station and 66.5% of CSO was from the whole runoff area. In the area of newly constructed sewer system, CSO problem was related with pump and sewer capacities, but in other old sewer system equipped area, it was due to the collection efficiency. Finally, Log-Log pollutant rating equations were suggested.

Performance of fiber media filter device for combined sewer overflows treatment (합류식 하수관거 월류수 처리를 위한 섬유사 여과 장치의 처리특성)

  • Son, Sang-Mi;Warangkana, Jutidamrongphan;Park, Ki-Young;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.231-236
    • /
    • 2010
  • A compressible media filtration process with synthetic fiber media was studied for combined sewer overflows (CSOs) treatment. Since the operation performance of fiber media filtration was dependent on the pattern of CSOs, the flow rate of CSOs was investigated and it was characterized by a big fluctuation. Thus, in this study, the fiber media filtration process was tested with wide range of filtration velocity. The removal efficiency was proportion to the increase in compressibility. As the filtration velocity was increased, the treatment efficiency was decreased and consequently leveled off when the velocity exceeded 750 $m^3/m^2$/d. An exponential equation was introduced to express the relationship between the removal efficiency and up-flow velocity. At columm test, six repetition of filtration and backwash cycle did not after the filtering velocity under the constant pressure condition.

Standard-Rainfall and Capacity of Intercepting Sewer to Control CSOs (CSOs 제어를 위한 기준강우 및 차집 용량 산정)

  • Lee, Jung-Ho;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • The combined sewer overflows(COSs) which enters to river are involved with water pollution of rivers. Therefore, the standard capacity should be decided in proper standard considering water pollution density and characteristic of outflow. But in domestic, the standard capacity is not considered the characteristics of rainfall-outflows and is applied uniformly in all areas. The standard is triple of a maximum amount of sewage per one hour ; 3Q. The outflow of 3Q enters to sewage treatment plant and the overflows enter to river. In this study, a standard rainfall is estimated to determine the capacity of intercepting sewer by statistical analysis of rainfall data and it is considered about the regional characteristic of the rainfall-outflow. The standard rainfall is analyzed through the data of Seoul. In the result the standard rainfall was 6.76mm of 4hr duration. The rainfall-outflows and CSOs are analyzed using SWMM(Storm Water Management Model).

Analysis of the Effects of Sewer System on Urban Stream using SWMM based on GIS (GIS 기반의 SWMM 모형을 이용한 하수도시스템 선정에 따른 도시하천 수질개선효과의 정량적 분석)

  • Jang, Ju-Hyoung;Park, Hae-Sik;Park, Chung-Kil
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.982-990
    • /
    • 2006
  • Generally CSOs (Combined Sewer Overflows) are regarded as one of the most serious nonpoint pollution source in the urban watershed, Particularly, the water quality of the Oncheon stream is seriously affected by CSOs because the capacity of interception sewer system connected to the Suyoung wastewater treatment plant is too small to intercept most storm water discharges. The objective of this study is to evaluate the effect of nonpoint source on an urban stream with regards to combined sewer system and separate sewer system using GIS (Geographic Information System) and SWMM (Storm Water Management Model), and to provide an insight for the management of urban stream water quality. In order to consider the effect of CSOs on the receiving water quality, the flow divider element in SWMM was applied. The model calibration and verification were performed by the measured data of quantity and quality on the Oncheon stream. The quantity data acquired from the Suyoung wastewater treatment plant were also used for this procedure. In case of separate sewer system, the modeling results showed the increased tendency in streamflow compared with the combined system in dry weather, In addition, the water quality is remarkably improved in rainfall events at the separate condition. The results imply that the construction of separate sewer system should be taken into first consideration to restore the quality and quantity of water in urban streams.