• Title/Summary/Keyword: Combined Cycle System

Search Result 315, Processing Time 0.028 seconds

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs (CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용)

  • Hong, Won-Pyo;Chung, Eun-Sung;Lee, Joon-Seok;Kim, Kyung-Tae;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

Fatigue Design of Mooring Lines of Floating Type Combined Renewable Energy Platforms

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • This paper presents the concept design procedure of a floating-type combined renewable energy platform based on hydrodynamic analyses and is focused on the fatigue design of taut-type mooring lines of the platform. Two types of combined renewable energy platforms are considered: a combination of wind turbine, wave turbine and photovoltaic energy plant and a combination of wind turbine, current turbine and photovoltaic energy plant. The basic configurations are conceptually determined from the understanding of floating offshore plants, while the main dimensions have been determined based on a hydrostatic calculation. Fully coupled hydrodynamic analyses have been carried out to identify the motion characteristics of the floating body and the tension histories of the mooring lines. The tension history is used for the fatigue life prediction based on the rain-flow cycle counting method. For the fatigue life prediction, tension life curves from API and the Palmgren-Miner rule are employed.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Analysis of the Effect of Bio-Retention Cells to Improve Water Cycle and Water Quality in Urban Streams (도시하천의 물순환 및 수질 개선을 위한 생태저류지의 효과분석)

  • Kim, Kyungmin;Choi, Jeonghyeon;Kim, Suhyeon;Kang, Lim-Seok;Shin, Hyunsuk;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.224-235
    • /
    • 2019
  • Rapid urbanization poses three major problems in urban streams. The first problem is the reduction of soil wetting from rainfall as the impervious area increases. Decrease in soil wetting causes serious distortion in the water cycle of urban streams. The second problem is the increase of non-point sources pollutants by urban land use, and the third problem is the combined sewer overflows in the old city center. Increased non-point sources pollutants and combined sewer overflows are associated with water cycle distortion, which increases water pollution in urban streams. In this study, EPA SWMM was constructed for the Busan Oncheon-stream watershed in order to suggest solutions for these three problems, and the bio-retention cells installation project was planned by benchmarking the actual projects in New York City. Water cycle improvement and reduction of non-point sources pollutants and combined sewer overflows for each project scenario were analyzed together with required budgets.

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.