• Title/Summary/Keyword: Combined Attack

Search Result 149, Processing Time 0.028 seconds

A Physical Combined Attack and its Countermeasure on BNP Exponentiation Algorithm (BNP 멱승 알고리듬에 대한 물리적인 조합 공격 및 대응책)

  • Kim, Hyung-Dong;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.585-591
    • /
    • 2013
  • Recently, the combined attack which is a combination of side channel analysis and fault attack has been developed to extract the secret key during the cryptographic processes using a security device. Unfortunately, an attacker can find the private key of RSA cryptosystem through one time fault injection and power signal analysis. In this paper, we diagnosed SPA/FA resistant BNP(Boscher, Naciri, and Prouff) exponentiation algorithm as having threats to a similar combined attack. And we proposed a simple countermeasure to resist against this combined attack by randomizing the private key using error infective method.

Freeze-Thaw Resistance of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성)

  • 문한영;김성수;이승태;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Freeze-Thaw Resistance and Void Characteristic of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 및 공극특성)

  • Kim, Seong-Soo;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.589-592
    • /
    • 2006
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 300 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The MIP analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

Two-Phase Security Protection for the Internet of Things Object

  • Suryani, Vera;Sulistyo, Selo;Widyawan, Widyawan
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1431-1437
    • /
    • 2018
  • Securing objects in the Internet of Things (IoT) is essential. Authentication model is one candidate to secure an object, but it is only limited to handle a specific type of attack such as Sybil attack. The authentication model cannot handle other types of attack such as trust-based attacks. This paper proposed two-phase security protection for objects in IoT. The proposed method combined authentication and statistical models. The results showed that the proposed method could handle other attacks in addition to Sybil attacks, such as bad-mouthing attack, good-mouthing attack, and ballot stuffing attack.

Prediction of Deterioration Process for Concrete Considering Combined Deterioration of Carbonation and Chlorides Ion (중성화와 염해를 고려한 콘크리트의 복합열화 예측)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.902-912
    • /
    • 2003
  • The most common deteriorating processes of concrete structures are carbonation and chloride ion ingress. Many concrete structures have been suffered from chloride ions diffusion or carbonation induced reinforcement corrosion damage and many studies have been done on it. However, those studies were confined mostly to the single deterioration of carbonation or chloride attack only, although actual environment is rather of combined conditions. In case of many in-situ concrete structures, deterioration happened more for the case of combined attack than the single case of carbonation or chloride attack. In this paper, chloride profiles of carbonated concrete is predicted by considering two layer composite model, which is based on Fick's 2nd law. From the experimental result on combined deterioration of chloride and carbonation, it was examined that high chloride concentration was built up to 3∼5 mm over depth from carbonation depth. The analytical modeling of chloride diffusion was suggested to depict the relative influence of the carbonation depth. The diffusion coefficients of carbonation concrete and uncarbonated concrete with elapsed time were considered in this modeling.

Study of the Improved Fast Correlation Attack on Stream Ciphers (스트림 암호에 대한 향상된 고속 상관 공격 적용 가능성 연구)

  • Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.17-24
    • /
    • 2009
  • Zhang et al. proposed a improved fast correlation attack on stream ciphers at SAC'08[8]. This attack is based on the fast correlation attack proposed at Crypto'00 and combined with FWT(fast Walsh transform). Given various attack environments, they presented complexities and success probabilities of the proposed attack algorithm. However, we found that our simulation results of the proposed attack algorithm are different from them presented in [8]. In this paper, we correct results of the proposed attack algorithm by analyzing it theoretically. And we propose a threshold of valid bias.

Related-Key Rectangle Attacks on Reduced Rounds of SHACAL-1 (SHACAL-1의 축소 라운드에 대한 연관키 Rectangle 공격)

  • 김종성;김구일;홍석희;이상진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.57-68
    • /
    • 2004
  • The rectangle attack and the related-key attack on block ciphers are well-known to be very powerful. In this paper we combine the rectangle attack with the related-key attack. Using this combined attack we can attack the SHACAL-1 cipher with 512-bit keys up to 59 out of its 80 rounds. Our 59-round attack requires a data complexity of $2^{149.72}$ chosen plaintexts and a time complexity of $2^{498.30}$ encryptions, which is faster than exhaustive search.