• 제목/요약/키워드: Combination bridge

검색결과 199건 처리시간 0.021초

체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가 (Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability)

  • 조태준;문제우;김종태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

Investigation of seismic response of long-span bridges under spatially varying ground motions

  • Aziz Hosseinnezhad;Amin Gholizad
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.401-416
    • /
    • 2024
  • Long-span structures, such as bridges, can experience different seismic excitations at the supports due to spatially variability of ground motion. Regarding current bridge designing codes, it is just EC 2008 that suggested some regulations to consider it and in the other codes almost ignored while based on some previous studies it is found that the effect of mentioned issue could not be neglected. The current study aimed to perform a comprehensive study about the effect of spatially varying ground motions on the dynamic response of a reinforced concrete bridge under asynchronous input motions considering soil-structure interactions. The correlated ground motions were generated by an introduced method that contains all spatially varying components, and imposed on the supports of the finite element model under different load scenarios. Then the obtained results from uniform and non-uniform excitations were compared to each other. In addition, the effect of soil-structure interactions involved and the corresponding results compared to the previous results. Also, to better understand the seismic response of the bridge, the responses caused by pseudo-static components decompose from the total response. Finally, an incremental dynamic analysis was performed to survey the non-linear behavior of the bridge under assumed load scenarios. The outcomes revealed that the local site condition plays an important role and strongly amplifies the responses. Furthermore, it was found that a combination of wave-passage and strong incoherency severely affected the responses of the structure. Moreover, it has been found that the pseudo-static component's contribution increase with increasing incoherent parameters. In addition, regarding the soil condition was considered for the studied bridge, it was found that a combination of spatially varying ground motions and soil-structure interactions effects could make a very destructive scenarios like, pounding and unseating.

Influence of geometric configuration on aerodynamics of streamlined bridge deck by unsteady RANS

  • Haque, Md. N.;Katsuchi, Hiroshi;Yamada, Hitoshi;Kim, Haeyoung
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.331-345
    • /
    • 2019
  • Long-span bridge decks are often shaped as streamlined to improve the aerodynamic performance of the deck. There are a number of important shaping parameters for a streamlined bridge deck. Their effects on aerodynamics should be well understood for shaping the bridge deck efficiently and for facilitating the bridge deck design procedure. This study examined the effect of various shaping parameters such as the bottom plate slope, width ratio and side ratio on aerodynamic responses of single box streamlined bridge decks by employing unsteady RANS simulation. Steady state responses and flow field were analyzed in detail for wide range of bottom plate slopes, width and side ratios. Then for a particular deck shape Reynolds number effect was investigated by varying its value from $1.65{\times}10^4$ to $25{\times}10^4$. The aerodynamic response showed very high sensitivity to the considered shaping parameters and exhibited high aerodynamic performance for a particular combination of shaping parameters.

The Mediation of Embodied Symbol on Combinatorial Thinking

  • Cho, Han-Hyuk;Lee, Ji-Yoon;Lee, Hyo-Myung
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제16권1호
    • /
    • pp.79-90
    • /
    • 2012
  • This research investigated if the embodied symbol using a turtle metaphor in a microworld environment works as a cognitive tool to mediate the learning of combinatorics. It was found that students were able to not only count the number of cases systematically by using the embodied symbols in a situated problem regarding Permutation and Combination, but also find the rules and infer a concept of Combination through the activities manipulating the symbols. Therefore, we concluded that the embodied symbol, as a bridge that connects learners' concrete experiences with abstract mathematical concepts, can be applied to introduction of various mathematical concepts as well as a combinatorics concept.

DC링크 전압 조합을 이용한 멀티 레벨 인버터 (A Multilevel Inverter Using DC Link Voltage Combination)

  • 주성용;이정환;강필순;김철우;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.621-624
    • /
    • 2003
  • In this paper, a novel multilevel inverter using DC-Link voltage combination is presented to reduce the harmonics of output voltage without the output filter inductor. The proposed multilevel inverter can generate 27-level output voltage. It employs three H-bridge cells which consist of single phase full-bridge inverter module. As well as, it can make continuous output voltage level employing the properly three DC-Link voltage ratio. The validity of the proposed inverter is verified through the experimental result using a prototype which can generate a 110[Vac], 60[Hz] output voltage from 12[Vdc], 36[vdc], and 108[Vdc] input voltages

  • PDF

당산철교의 설계 (Design of Dang-San Steel Railway Bridge)

  • 유동호;김선일
    • 전산구조공학
    • /
    • 제12권4호
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.

2 Key Bridge에 대한 연구 (A Study on the 2 Key Bridge)

  • 박종희
    • 대한치과기공학회지
    • /
    • 제22권1호
    • /
    • pp.57-67
    • /
    • 2000
  • The 2 key bridge system has been developed to make crownless bridges without damaging sound teeth. Strong bridge work of single or multiple pontics is possible for replacing both anterior and posterior teeth. It is incresingly considerde to be unacceptable, by dentists as well as patients, to fully grind down healthy elements in order fit a conventional bridges. Because this technique uses a combination of hole and adhesive fitting, it has a number of adventages over etched bridges and conventional bridges: - In comparison with conventional bridges, hardly and healthy dental tissue is sacrificed - Due to the lack of crown edges there is no periodontal pressure, as is the case with conventional bridges - The treatment procedure is straight forward and involves less time than conventional bridges. - The treatment is largely resiverable and repairable

  • PDF

일체식교대 PSC빔 교량의 거동에 관한 매개변수 해석 (A Parametric Study on the Behavior of Integral Abutment rSC Beam Bridge)

  • 홍정희;정재호;유성근;박종면;윤순종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.412-419
    • /
    • 2002
  • This paper presents a parametric study on the behavior of integral abutment PSC beam bridge. An integral abutment bridge is a simple span or multiple span continuous deck type bridge having the deck integral with the abutment wall. The rational structural model and design load combinations accounting for each construction stage are proposed. It can be used for defining the effect of earth pressure and temperature change in the design process including for determining maximum flexural responses. The bending moment at each response location due to the design load combination is investigated according to the change of flexural rigidity of piles and abutment height. The flexural responses of proposed model are computed for the cases of applying the Rankine passive earth pressure and the earth pressure based on the soil-structure interaction respectively, and the results are discussed.

  • PDF