• Title/Summary/Keyword: Combat element

Search Result 43, Processing Time 0.021 seconds

A Study on the Analysis of NCW(Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차(Cellular Automata) 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Jeong, Seong-Jin;Jo, Seong-Jin;Hong, Seong-Pil
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-9
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system the importance of non-physical element, such as communication system is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power. Obviously, such method is hardly applicable to a modern combat system To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modem combat system.

  • PDF

ANN-based Evaluation Model of Combat Situation to predict the Progress of Simulated Combat Training

  • Yoon, Soungwoong;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.31-37
    • /
    • 2017
  • There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.

A Study on the Analysis of NCW (Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Chung Sung-jin;Cho Sung-jin;Hong Sung-Pil
    • Korean Management Science Review
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute the right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system, the importance of non-physical elements, such as a communication system, is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power, Obviously, such method is hardly applicable to a modern combat system. To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modern combat system.

Development of data analysis tool for combat system integration

  • Shin, Seung-Chun;Shin, Jong-Gye;Oh, Dae-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.147-160
    • /
    • 2013
  • System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

Research on Intelligent Combat Robot System as a Game-Changer in Future Warfare

  • Byung-Hyo Park;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2023
  • The Army has presented eight game-changers for future warfare through 'Army Vision 2050,' including Intelligent Combat Robots, Super Soldiers, Energy Weapons, Hypersonic Weapons, Non-lethal Weapons, Autonomous Mobile Equipment, Intelligent Command and Control Systems, and Energy Supply Systems. This study focuses on Intelligent Combat Robots, considering them as the most crucial element among the mentioned innovations. How will Intelligent Combat Robots be utilized on the future battlefield? The future battlefield is expected to take the form of combined human-robot warfare, where advancements in science and technology allow intelligent robots to replace certain human roles. Especially, tasks known as Dirty, Difficult, Dangerous, and Dull (4D) in warfare are expected to be assigned to robots. This study suggests three forms of Intelligent Robots: humanoid robots, biomimetic robots, and swarm drones.

The Study on the improvement plan for Military combat power by the future computer (미래형컴퓨터를 이용한 군전투력 발전방안 연구)

  • Heo, Yeong Dae
    • Convergence Security Journal
    • /
    • v.13 no.5
    • /
    • pp.57-66
    • /
    • 2013
  • Predicting pattern of future combat ensures a successful war. It is possible to anticipate the shape of the future combat from the fighting method of US Army in the Iraq War. The fighting method: a series of combat progress by real time information to pinpoint strike using a guided weapon by GPS, an intelligence satellite and unmanned surveillance vehicle (USV), shows that real time unification combat power is key element for decide outcome of a war. The NCW is an organically connected network centric warfare paradigm by networking a factor of operation. In this paper, studied on the improvement plan for combat power by the future computer like a portable computer, an audio-recognized computer and non-keyboard computer. In addition, this paper attempts to establish a comprehensive intelligence network of Korea Marine Corps and to apply to combat or training.

The Study on the improvement plan for Military combat power by base of NCW against the future War (미래전쟁을 대비한 NCW기반 전투력 발전방안 연구)

  • Heo, Yeong Dae
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.153-161
    • /
    • 2017
  • The gain a decision by a prediction supposition future combat. Take a future combat by the method fighting of U.S. Army in the Irak war. A make combat progress is from real time information to precision bombing for a guided weapon by GPS, a intelligence satellite, a pilotless scout plane, real time simultaneous and unification combat power are the kernel element of gain a decision fighting power by network in the ground, sky, marine, universe, cyberspace. The NCW is in a sense network center war organic be connected by networking a factor of operation. Any where networking information collection, command and decision, blow system. The Study on the improvement plan for Military combat power by base of NCW abainst the future War. Construct an integrate intelligence network apply to future combat.

A study on estimating rifle ammunition RSR based on truncated Weibull model (우측중도절단된 와이블 분포를 이용한 소총 탄약 소요보급률 추정 연구)

  • Park, Jaeshin;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.129-138
    • /
    • 2019
  • Ammunition is an integral element of a weapon systems and in calculating fighting strength. The Korea Army utilizes the basic load (B/L) concept to supply ammunition smoothly. The required supply rate (RSR) is the basis of a B/L that is estimated from real combat data that includes a troop's mission and operation terrain. The current RSR is based on Korean War data and the sample mean has some problems in applications to modern combat. Therefore, this study used Korea Combat Training Center (KCTC) data that is similar to real combat to estimate rifle ammunition RSR. We used a quantile of truncated Weibull distribution to estimate rifle ammunition RSR considering that rifle ammunition consumption data in KCTC is truncated. As a result, we obtained a rifle ammunition RSR which covers most ammunition consumption by reflecting the individual consumption of rifle ammunition.

Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression (로지스틱 회귀모형을 활용한 소산 및 전투시설의 방호성능 보강방안 연구)

  • Park, Young Jun;Park, Sangjin;Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • This study provides the numerical model to assess retrofit and strengthen levels in the dispersal and combat facilities. First of all, it is verified that direct-hitting projectiles are more destructive to the structures rather than close-falling bombs with explosion tests. The protective capacity of dispersal and combat facilities, which are modeled with soil uncertainty and structural field data, is analyzed through finite element method. With structural survivability and facility data, the logistic regression model is drawn. This model could be used to determine the level of the retrofit and strengthen in the dispersal and combat facilities of contact areas. For more reliable model, it could be better to identify more significant factors and adapt non-linear model. In addition, for adapting this model on the spot, appropriate strengthen levels should be determined by hands on staffs associated with military facilities.

A Study on the Software Standardization and Simulator Design for Efficient Reliability Test in Combat System

  • Choi, Hwan-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.151-159
    • /
    • 2022
  • In this paper, we propose the standardization architecture and weapon-sensor simulator for efficient reliability test in combat system. To reduce man-month of reliability test, application with high dependency on other module is selected and apply FORM. The proposed standardization architecture extracts common, variable elements and design patterns, S.O.L.I.D principles were applied. The proposed weapon-sensor simulator implements essential functions by identifying highly dependent element of other modules and the information from equipment can be directly received without processing by using communication middleware. As a result, it can replace actual ship-mounted equipment. In addition, it is possible to reduce the consumption rate of human resources when perform reliability test and modification time can be shorted.