• Title/Summary/Keyword: Combat Vehicle

Search Result 116, Processing Time 0.023 seconds

A Study on the Property Change of the Transparent Film for Vehicle Cover according to Weathering Test (차량 덮개용 투명 필름 내후 시험에 따른 물성변화 연구)

  • Kim, Ji-Hoon;Kim, Byung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.174-180
    • /
    • 2019
  • In this study, we evaluated and analyzed the properties of polymeric transparent films used in military vehicle covers according to weathering test. Two types of polymer films (Film A and Film B) that are mostly used for military vehicle covers were selected. The weathering treatment condition and tester are described in KS K 0706, and the following weathering times were tested: 0hour, 40hours, 160hours and 320 hours. The tensile strength, elongation and thermal decomposition behavior and optical characteristics were analyzed. The tensile strength tended to decrease - increase - decrease with increasing weathering treatment time in both transparent films. The thermal decomposition temperature gradually decreased. Regarding the optical property, the light transmittance decreased and the haze tended to increase. However, film A showed almost similar optical characteristics after 160-hour weathering treatment.

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

A Graphical User Interface Design for Surveillance and Security Robot (감시경계 로봇의 그래픽 사용자 인터페이스 설계)

  • Choi, Duck-Kyu;Lee, Chun-Woo;Lee, Choonjoo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.

The Estimation Method of Equipment Maintenance Cost (장비유지비 소요 예측 기법 연구)

  • Kim, Jeong-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.41-51
    • /
    • 2008
  • Advanced high-tech weapons have enormous affect on combat strength in modern warfare. However, lack of maintenance can cause decrease in equipment operating rate as well as decrease in expectation on demonstrative effect of combat strength during wartime. Therefore it is essential for combat readiness that the optimum requirement of equipment maintenance cost are forecasted and included in the budget. In this paper, the trend of equipment maintenance cost about K-111 1/4t military vehicle is first analyzed by evaluating the performance data of field operation. Secondly, based on above analyzed results, the forecasting model of equipment maintenance cost is designed. Finally, by applying this forecasting model, suggestion and estimation method of equipment maintenance cost have presented for the foreseeable future.

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

A Numerical Study on the Flash Fire in the Combat System by the Kinetic Energy Ammunition and the Loaded Shells (운동에너지 탄과 적재포탄에 따른 전투시스템 내부에서의 순간화재발생에 대한 전산해석)

  • Lee, Seung-Chul;Jeon, Woo-Chul;Lee, Hae-Pyeong;Lee, Heon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • In this paper, numerical analysis was performed about whether the flash fire of loaded shells breaks out in the virtual combat vehicle according to sorts of the kinetic energy ammunition as the preceding research for vulnerability analysis inside the combat system by an external threaty ammunition. In this simulation, Autodyn program was used and the Lee-Tarver ignition and growth model was used to determine the flash fire outbreak. In this study, the kinetic energy ammunition was set of type A and type B in two kinds and the loaded shells was set of COMPB, TNT, PBX9404 and ANB. As a result, TNT and PBX9404 have much higher flash fire probability than COMPB in high explosive, ANB has very low flash fire probability.

A War-time Engineering Equipment's Assignment and Operation Model (전시 공병장비 할당 및 운용 모형)

  • Jae-Hyeong Lee;Moon-Gul Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows of required start and completion time. Our approach focused on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.

A Method for Reliability Analysis of Armored Fighting Vehicle using RBD based on Integrated Hit Probabilities of Crews and Components (통합 피격 확률 분석을 이용한 RBD 기반의 전차 신뢰도 분석 방법)

  • Hwang, Hun-Gyu;Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1040-1048
    • /
    • 2016
  • Recently, the studies of integrated reliability analysis for combat systems are actively progressing. Especially, the research of integrated reliability analysis is emphasized to overcome limitations of the previous studies. In this paper, we propose a calculation technique for integrated hit probability based on front and side hit probabilities that analyzed in previous studies to improve the time-effectiveness. Also, we find out the integrated reliability of each component based on the integrated hit probability which is calculated, and we propose the method which applied the reliability block diagram technique to analyze the whole combat system of the reliability by function kills. For verifying the proposed method, we applied the proposed method to armored fighting vehicle model. The proposed method considers crew which does not considered the element in the previous study and expects to enhance the accuracy of reliability analysis and the time-effectiveness compared with the previous study.

A Design of Stabilization Controller with Road Profile Detector for Aiming Performance Improvment of Moving Vehicle. (특수 차량의 기동간 조준정확도 향상을 위한 노면에 적응하는 안정화 제어기 설계)

  • Kim, Dae-Jun;Kim, Han-Su;Jung, Sun-Yong;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.841-843
    • /
    • 1999
  • This paper presents a design of stabilization controller for combat vehicle. A Stabilization system reject disturbances while vehicle moving. The conventional stabilization controller used to constant gain. We can improve the aiming performance by appropriate controller gain. We can find the proper controller gain for road frequencies by evolution strategy(ES). The relationship between the frequencies and proper control gains are generalized by use of the neural network. The road frequency estimated by wavelet transform of disturbance signal. The simulation result show that proposed controller is superior to the conventional stabilization controller.

  • PDF

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.