• Title/Summary/Keyword: Combat Simulation Model

Search Result 130, Processing Time 0.031 seconds

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

Command and control modeling for computer assisted exercise (훈련시뮬레이션에서의 지휘통제 모델링)

  • Yun, Woo-Seop;Han, Bong-Gyu;Lee, Tae-Eog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.117-126
    • /
    • 2016
  • We suggest the C2 modeling method to develop a simulation model for training command groups which consist of commanders and staffs. By using C2 models in constructive simulation models, combat entities or units directly receive and execute orders from a command group without mediating human role players. We also compare combat results from suggested modeling method with the results of existing models by building and implementing a simulation model with C2 models. Our analysis by comparison demonstrates advantages of suggested method to model C2 for computer assisted exercises.

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2 : Detailed Model Design & Model Implementation (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제2부 : 상세 모델 설계 및 모델 구현)

  • Seo, Kyung-Min;Choi, Changbeom;Kim, Tag Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.235-247
    • /
    • 2014
  • Based on two dimensional model partition method proposed in Part 1, Part 2 provides detailed model specification and implementation. To mathematically delineate a model's behaviors and interactions among them, we extend the DEVS (Discrete Event Systems Specification) formalism and newly propose CE-DEVS (Combat Entity-DEVS) for an upper abstraction sub-model of a combat entity model. The proposed CE-DEVS additionally define two sets and one function to reflect essential semantics for the model's behaviors explicitly. These definitions enable us to understand and represent the model's behaviors easily since they eliminate differences of meaning between real-world expressions and model specifications. For model implementation, upper abstraction sub-models are implemented with DEVSim++, while the lower sub-models are realized using the C++ language. With the use of overall modeling techniques proposed in Part 1 and 2, we can conduct constructive simulation and assess factors about combat logics as well as battle field functions of the next-generation combat entity, minimizing additional modeling efforts. From the anti-torpedo warfare experiment, we can gain interesting experimental results regarding engagement situations employing developing weapons and their tactics. Finally, we expect that this work will serve an immediate application for various engagement warfare.

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

A Study on the Application Model of High Availability of shipboard Combat Systems (함정 전투체계 고가용도 모델 적용에 관한 연구)

  • Lee, Kyoung-Haing;Han, Dong-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • This research has conducted high availability system modeling to assure the reliability of shipboard combat systems. Shipboard combat system is a way for efficient execution of duty and a crucial battlefield management system that determines the outcome of battle in the modern war. Especially in regard to a network-centric operational environment in the future, even 1% of malfunction can lead to fatal consequences for the outcome of war. So combat system should be designed by high availability system which is a "always-on" service. In this point of view, This work describes an architecture-based various high availability model and proposed alternative high available systems that can achieve more than 99.9999% accuracy at a minimum. This paper also provides an applicable model with which system engineers analyze out system failure and recovery process by employing computerized tools.

Stochastic Analysis to Characterize A CARMONETTE Data

  • Lee Jae-Yeong;Kolding James C.
    • Journal of the military operations research society of Korea
    • /
    • v.15 no.1
    • /
    • pp.78-94
    • /
    • 1989
  • Events that occur within a high 'resolution' combat model often need to be characterized and structured for representation in other models or for detailed analysis purposes. This paper attempts to characterize one of these events, helicopter deaths. The data analyzed for this paper were generated by a high resolution production simulation system, CARMONETTE. The thesis objective is to develop a model to characterize the event of interest, and check the fit of the developed model using a second set of data. The exponential model developed provides not only excellent characterization of Blue helicopter attrition but also sufficient confidence in our results for the purpose of aggregated combat simulation.

  • PDF

Development of Simulation Logic for Wargame Model Based on Warhead Detonation Test Data (탄두 기폭실험 결과를 활용한 워게임모델 모의논리 개발)

  • Seil An;Yongseon Lee;Sungho Choi ;Sangwoo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.13-25
    • /
    • 2024
  • In the performance analysis of a weapon system, the combat effectiveness is difficult to go beyond the conceptual level in the early stages of development. This is especially true in the case of new concept of weapon system that has never existed before. In this study, with the aim of analyzing the effectiveness of small personal guided weapons, the design of the warhead and the detonation test were carried out and the results were analyzed. Afterwards, trajectory of fragments were calculated from the results, and it is applied to the anti-personnel effectiveness logic which is a part of combat simulation tool. At the same time, delivery accuracy logic was constructed from Monte-Carlo simulation with 6-DOF trajectory model. Subsequent simulated experiments were conducted with test scenarios to confirm the simulation logic reflecting the results of the warhead detonation tests for verifying the simulation approach of weapon systems, and it was confirmed that the simulation logic incorporating the results of the warhead detonation tests functioned properly.

Resupply Behavior Modeling in Small-unit Combat Simulation using Decision Trees (소부대 전투 모의를 위한 의사결정트리 기반 재보급 행위 모델링)

  • Seil An;Sang Woo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.9-21
    • /
    • 2023
  • The recent conflict between Russia and Ukraine underscores the significant of military logistics support in modern warfare. Military logistics support is intricate and specialized, and traditionally centered on the mission-level operational analysis and functional models. Nevertheless, there is currently increasing demand for military logistics support even at the engagement level, especially for resupply using unmanned transport assets. In response to the demand, this study proposes a task model of the military logistics support for engagement-level analysis that relies on the logic of ammunition resupply below the battalion level. The model employs a decisions tree to establish the priority of resupply based on variables such as the enemy's level of threat and the remaining ammunition of the supported unit. The model's feasibility is demonstrated through a combat simulation using OneSAF.

A Study on Modeling of Fighter Pilots Using a dPCA-HMM (dPCA-HMM을 이용한 전투기 조종사 모델링 연구)

  • Choi, Yerim;Jeon, Sungwook;Park, Jonghun;Shin, Dongmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

A Development of 3D Penetration Analysis Program for Survivability Analysis of Combat System : Focused on Tank Model (전투 시스템 생존성 분석을 위한 3차원 관통 해석 프로그램 개발 : 전차 모델을 대상으로)

  • Hwang, Hun-Gyu;Lee, Jae-Woong;Lee, Jang-Se;Park, Jong-Sou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.244-250
    • /
    • 2015
  • Survivability is avoidance and tolerance ability of combat systems for accomplishing mission in battle field. Therefore, the combat system has to protect or minimize any damage from threats. For this reason, many modeling and simulation based studies which analyze vulnerability of the combat system by threats, are in progress to improve survivability of the combat system. In this paper, we developed a 3D penetration analysis program for survivability analysis of combat system. To do this, we applied the penetration analysis equation to threat and protection performance of tank. Also we implemented simple tank models based on 3D CAD, and tested the developed program using the implemented tank models. As a result, we verified the developed program that is possible to analyze penetration by threat and protection performance of tank and to visualize its result, based on scenarios.