• Title/Summary/Keyword: Combat Simulation

Search Result 268, Processing Time 0.023 seconds

Opportunistic Data Relay Scheme for Narrowband Multihop Combat Radio Networks (협대역 다중홉 전투무선망에서 기회적 데이터 중계 기법)

  • Lee, Jongkwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2022
  • In this paper, we propose an opportunistic data relay scheme in narrowband multihop combat radio networks. Narrowband networks have physical restrictions on high-speed transmission. Furthermore, the topology changes dynamically due to the jamming of the enemy, signal interference between friendly forces, and movement of network entities. Therefore, the traditional relay scheme that collects topology information and calculates a relay path before transmission is unsuitable for such networks. Our proposed scheme does not collect topology information and transmits data opportunistically. The scheme can cause unnecessary data relaying that is not related to data delivery to the destination node. However, for small networks, the effect of increasing network throughput by not gathering topology information is much greater than the effect of reducing throughput by unnecessary data relays. We demonstrate the performance superiority of the proposed scheme through simulation in the worst case of network topology.

An Air Defence M&S Architecture Design Framework for a Reusability (재사용을 위한 방공 M&S 아키텍처 설계 프레임워크)

  • Yun, Keunho;Shim, Shinwoo;Hwang, Jongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-662
    • /
    • 2014
  • In the development of the weapon systems, utilization of Modeling & Simulation is growing in every aspect of development process. For the higher utilization of M&S, reuse of the M&S resources is needed to reduce the cost of M&S. I propose the M&S architecture framework that can enhance the reusability of the M&S resources in developing surface-to-air weapon systems. This M&S architecture design framework enables interoperability between the system and sub-systems. In this paper, the advantage and the necessity of the M&S architecture design framework will be described by introducing the cases that the M&S architecture framework reused in the combat experiments, the system development tests, the system operational tests and the concept developments in real projects. These cases will show the high reusability and efficiency of the M&S architecture design framework.

A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar (컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구)

  • Lee, HaeHo;Park, GyuTae;Shin, KeeCheol;Cho, SungIl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Efficient Task-Resource Matchmaking Technique for Multiple/Heterogeneous Unmanned Combat Systems (다중/이종 무인전투체계를 위한 효율적 과업-자원 할당 기법)

  • Young-il Lee;Hee-young Kim;Wonik Park;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • In the future battlefield centered on the concept of mosaic warfare, the need for an unmanned combat system will increase to value human life. It is necessary for Multiple/Heterogeneous Unmanned Combat Systems to have suitable mission planning method in order to perform various mission. In this paper, we propose the MTSR model for mission planning of the unmanned combat system, and introduce a method of identifying a task by a combination of services using a request operator and a method of allocating resources to perform a task using the requested service. In order to verify the performance of the proposed task-resource matchmaking algorithm, simulation using occupation scenarios is performed and the results are analyzed.

A Study on the Analysis of Mission Reliability in the Combat System through SysML (SysML설계기법을 통한 전투체계 임무신뢰도 분석연구)

  • Lee, Jeong-Wan;Jang, Joong Soon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Mission reliability is defined by the probability of accomplishing the requirements task that were targeted in product development, and in the case of combat systems, mission reliability is an important factor that will determine victory or defeat, unlike commercial equipment. The mission reliability of the existing domestic combat system was calculated by considering only the physical connections of the equipment involved in the mission performance, but as the equipment becomes increasingly sophisticated and complex, it is impossible to determine the mission relevance solely by physical connection. Thus, in this paper, improved mission reliability was calculated using SysML, the system design modeling language, by taking into account the functional connection as well as physical connection. Based on this research, we look forward that the mission reliability of the combat system that will be developed in the future will be used as a verification material.

Aircraft Combat Survivability Analysis based on the Random Variable Weighted Score Algorithm (확률변수 가중치 환산법 기반 군용 항공기 생존성 분석기법)

  • Yang, Ju-Suk;Lee, Kyung-Tae;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.883-890
    • /
    • 2013
  • Aircraft combat survivability analysis is essential process for the development of combat aircraft. M&S methodology is the typical procedure for the aircraft combat survivability analysis, and the last step is the expensive Live Fire Test if it is necessary. This study introduced cost and time effective survivability analysis methodology based on the random variable weighted score algorithm in conceptual design phase. For this study, essential element and event analysis (E3A) is used to define the random variables and Monte-Carlo simulation is implemented to estimate weighted score and the final value of survivability.

A Study on Modeling of Fighter Pilots Using a dPCA-HMM (dPCA-HMM을 이용한 전투기 조종사 모델링 연구)

  • Choi, Yerim;Jeon, Sungwook;Park, Jonghun;Shin, Dongmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

Stochastic Analysis to Characterize A CARMONETTE Data

  • Lee Jae-Yeong;Kolding James C.
    • Journal of the military operations research society of Korea
    • /
    • v.15 no.1
    • /
    • pp.78-94
    • /
    • 1989
  • Events that occur within a high 'resolution' combat model often need to be characterized and structured for representation in other models or for detailed analysis purposes. This paper attempts to characterize one of these events, helicopter deaths. The data analyzed for this paper were generated by a high resolution production simulation system, CARMONETTE. The thesis objective is to develop a model to characterize the event of interest, and check the fit of the developed model using a second set of data. The exponential model developed provides not only excellent characterization of Blue helicopter attrition but also sufficient confidence in our results for the purpose of aggregated combat simulation.

  • PDF

Stochastic Combat Simulation with Variable Hit Probabilities (명중확률의 변화를 고려한 확률과정 전투 시뮬레이션)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.76-87
    • /
    • 2001
  • The effect of variable hit probabilities in the stochastic duel are examined. The objective of this study is to evaluate the outcomes of combat under the situations which we assume either round dependent hit probabilities or time dependent hit probabilities. Due to the complexity of an analytic approach to large-sized battles, a simulation modeling technique has been introduced. several specific examples are demonstrated fire allocation strategies. Output measures are compared among cases each with its own type of hit probability fashion such as constant, round to round, or time dependent manners. For these specific cases, the advantages of round to round improvement or increasing function of time for the hit probability are displayed.

  • PDF

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.