• 제목/요약/키워드: Columnar defect

검색결과 16건 처리시간 0.022초

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성 (Copper, aluminum based metallization for display applications)

  • 김형택;배선기
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

수직 연속주조 공정으로 제조된 Al-8Zn-2Mg-2Cu 빌렛의 표면 결함 형성에 미치는 주조 온도와 주조 속도의 영향 (Effect of Casting Temperature and Speed on Formation of Surface Defect in Al-8Zn-2Mg-2Cu Billets Fabricated by Direct-Chill Casting Process)

  • 이윤호;김용유;이상화;김민석;어광준;이동근
    • 한국주조공학회지
    • /
    • 제41권3호
    • /
    • pp.241-251
    • /
    • 2021
  • 7000계 알루미늄 합금은 다른 Al 합금에 비해 강도가 우수하여 주목을 받고있으며, 7000계 알루미늄 빌렛은 일반적으로 Direct-Chill (DC) 주조 공정을 통해 제조된다. DC 주조 공정으로 제조된 알루미늄 빌렛의 표면 결함은 주로 Exudation과 Meniscus freezing 현상과 관련이 있으며, 이는 합금 성분, 주조 속도 및 주조 온도의 영향을 받는다. 특히, 7000계 알루미늄 합금은 응고 과정에서 응고 온도 범위가 넓어 주조 결함이 발생하기 쉽다. 본 연구에서는 DC 주조 공정에 의해 제조된 Al-8Zn-2Mg-2Cu 합금 빌렛에 대한 표면 결함 변화에 대하여 조사하였다. 빌렛의 표면은 "Wavy" 또는 "Dot" 표면으로 관찰되었다. Wavy 표면은 낮은 주조 속도(200mm/min)와 온도(655℃)에서 Meniscus freezing 현상에 의해 형성되었으며, Concave 영역에서 Meniscus freezing 현상으로 인한 조성작 과냉으로 인해 미세한 수지상 조직이 관찰되었다. 반면에, 주조 온도가 높은 조건(675℃)에서는 Dot 표면이 기공 형성에 의해 형성되었으며, 높은 주조 속도(230mm/min)에서 제조된 Dot 표면을 갖는 빌렛에서는 높은 금속 수두압에 의해 Exudation 층이 형성되었다. Exudation 층의 Dot 영역과 Smooth 영역은 각각 미세한 수지상 형태와 주상정 형태의 조직이 관찰되었으며 이는 Dot 영역에서 가스 기공의 형성에 의한 결과이다.

구강내 접근법을 이용한 비순낭종의 치료 경험 (Clinical Experience with Nasolabial Cysts Using the Sublabial Approach)

  • 권준성;최환준;최창용;박재홍;박래경;김숙
    • Archives of Plastic Surgery
    • /
    • 제38권3호
    • /
    • pp.251-256
    • /
    • 2011
  • Purpose: A nasolabial cyst is a rare non-odontogenic, soft-tissue, developmental cyst arising anywhere on the face inferior to the nasoalar region. It is thought to arise from either epithelial remnants trapped along the lines of fusion during the development of face or the remnants of the developing nasolacrimal duct. This study examines various features of nasolabial cysts with bony involvement to provide a basis for correct diagnosis and treatment. Methods: Eight cases of nasolabial cyst treated in Soonchunhyang Hospital between March 2002 and July 2010 were examined in terms of their clinical features and radiological and histological findings. Seven patients underwent surgical excision of the cyst via an intraoral, sublabial approach. One underwent incision and drainage. Results: Our eight patients were seven women and one man. The most frequent symptoms and signs were facial deformity and swelling of the nasolabial fold. Computed tomography (CT) showed a well-circumscribed cystic mass lateral to the pyriform aperture. Seven cases had erosive lesions on CT, and the intraoperative findings were consistent with a nasolabial cyst with a bony defect. Typical histopathological findings showed that these cysts were most frequently lined with respiratory epithelium with ciliated columnar cells and cuboid cells. No patient developed complications or recurrences. Conclusion: A nasolabial cyst is often unrecognized or confused with other intranasal masses, including fissural and odontogenic cysts, midface infections, or swelling in the nasolabial area. Therefore, a careful clinical and radiological evaluation should be preformed when considering the differential diagnosis. We present eight patients with nasolabial cysts treated via a gingivobuccal approach with excellent functional and cosmetic results.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape

  • Rajput, M.;Swami, H.L.;Kumar, R.;Bano, A.;Vala, S.;Abhangi, M.;Prasad, Upendra;Kumar, Rajesh;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2586-2591
    • /
    • 2022
  • In the present work, we have irradiated the DI-BSCCO superconducting tapes with the 100 keV deuterium ions to investigate the effect of ion irradiation on their critical current (Ic). The damage simulations are carried out using the binary collision approximation method to get the spatial distribution and depth profile of the damage events in the high temperature superconducting (HTS) tape. The point defects are formed near the surface of the HTS tape. These point defects change the vortex profile in the superconducting tape. Due to the long-range interaction of vortices with each other, the Ic of the tape degrades at the 77 K and self magnetic field. The radiation dose of 2.90 MGy degrades the 44% critical current of the tape. The results of the displacement per atom (dpa) and dose deposited by the deuterium ions are used to fit an empirical relation for predicting the degradation of the Ic of the tape. We include the dpa, dose and columnar defect terms produced by the incident particles in the empirical relation. The fitted empirical relation predicts that light ion irradiation degrades the Ic in the DI-BSCCO tape at the self field. This empirical relation can also be used in neutron irradiation to predict the lifetime of the DI-BSCCO tape. The change in the Ic of the DI-BSCCO tape due to deuterium irradiation is compared with the other second-generation HTS tape irradiated with energetic radiation.