• Title/Summary/Keyword: Columnar Structure

Search Result 277, Processing Time 0.021 seconds

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

Structural properties of Pd-barium zirconate dense membrane synthesized by dual sputtering method (동시 증착 스퍼터링 공정에 의해 증착된 Pd-barium zirconate membrane의 구조분석)

  • Byeon, Myeong-Seop;Kang, Eun-Tae;Cho, Woo-Seok;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • Barium zirconate exhibits good thermo-chemical stability and proton conduction at high temperatures, but shows poor electron conductivity. Therefore, for high efficiency of hydrogen separation, a very thin and dense Pd-Barium zirconate membrane has to be coated on a porous substrate. A thin and dense Pd-Barium zirconate membrane was successfully synthesized on a porous substrate by means of dual sputtering method. The structural and chemical features of the $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membranes sputtered at $300^{\circ}C$ and $400^{\circ}C$ were investigated by X-ray diffractometry, and it was found that a well-crystallized membrane, Pm-3m space group of $BaZrO_3$, was synthesized. The surface and cross-sectional morphologies of membrane were assessed by SEM (scanning electron microscopy) and TEM(transmission electron microscopy) of the surface and of cross sections. The cross sectional observation of Pd-$BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membrane by dual sputtering shows that the coating is quite dense with columnar structure.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Deposition uniformity of 7 wt% YSZ as a thermal barrier coating with different configurational arrangement for turbine blade shape mock-up by electron beam physical vapor deposition (터빈블레이드 형상 mock-up의 기하학적 배치조건에 따른 전자빔 물리기상증착법으로 제조된 7 wt% YSZ 열차폐 코팅의 코팅 균일성)

  • Oh, Yoon-Suk;Chae, Jung-Min;Ryu, Ho-lim;Han, Yoon-Soo;An, Jong-Kee;Son, Myung-Sook;Kim, Hong-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.308-316
    • /
    • 2019
  • Electron beam physical vapor deposition (EBPVD) is a conventional method to fabricate thermal barrier coating (TBC) of high temperature airfoil engine parts, such as blade etc. for its high temperature structural stability from the nature of columnar growth behavior. For the high quality of TBC by EBPVD, the structural factors, such as growth behavior, thickness uniformity and so on, should be managed to obtain the coating which satisfied the required specifications of usable level of mechanical and thermal properties. In this study, the growth behavior and structure variations of 7YSZ (7 wt% yttria stabilized zirconia) coatings with different configurational deposition parameters for the specimens which have turbine blade shape mock-up were investigated. Growth behavior of coatings were studied by comparing computational modeling of evaporation behavior with actual deposition process using e-beam source.

Annealing Characteristics of Electrodeposited Cu(In,Ga)Se2 Photovoltaic Thin Films (전해증착 Cu(In,Ga)Se2 태양전지 박막의 열처리 특성)

  • Chae, Su-Byung;Shin, Su-Jung;Choi, Jae-Ha;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.661-668
    • /
    • 2010
  • Cu(In,Ga)$Se_2$(CIGS) photovoltaic thin films were electrodeposited on Mo/glass substrates with an aqueous solution containing 2 mM $CuCl_2$, 8 mM $InCl_3$, 20 mM $GaCl_3$ and 8mM $H_2SeO_3$ at the electrodeposition potential of -0.6 to -1.0 V(SCE) and pH of 1.8. The best chemical composition of $Cu_{1.05}In_{0.8}Ga_{0.13}Se_2$ was found to be achieved at -0.7 V(SCE). The precursor Cu-In-Ga-Se films were annealed for crystallization to chalcopyrite structure at temperatures of 100-$500^{\circ}C$ under Ar gas atmosphere. The chemical compositions, microstructures, surface morphologies, and crystallographic structures of the annealed films were analyzed by EPMA, FE-SEM, AFM, and XRD, respectively. The precursor Cu-In-Ga-Se grains were grown sparsely on the Mo-back contact and also had very rough surfaces. However, after annealing treatment beginning at $200^{\circ}C$, the empty spaces between grains were removed and the grains showed well developed columnar shapes with smooth surfaces. The precursor Cu-In-Ga-Se films were also annealed at the temperature of $500^{\circ}C$ for 60 min under Se gas atmosphere to suppress the Se volatilization. The Se amount on the CIGS film after selenization annealing increased above the Se amount of the electrodeposited state and the $MoSe_2$ phase occurred, resulting from the diffusion of Se through the CIGS film and interaction with Mo back electrode. However, the selenization-annealed films showed higher crystallinity values than did the films annealed under Ar atmosphere with a chemical composition closer to that of the electrodeposited state.

Modified Kranz Structure in Leaves of Salsola collina (Salsola collina 엽육조직내 변형된 크란츠구조)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.207-214
    • /
    • 2001
  • Anatomy and ultrastructure of the modifeid Krana pattern have been studied in succulent Salsola collina Pall. Cylindrical leaves exhibited the Salsoloid Kranz type containing two layers of peripheral chlorenchyma that surrounded the water storage cells and vascular tissues. Small veins were also peripherally arranged, but mostly embedded in the vicinity of the inner chlorenchma without the orderly arrangement of the concentric layering of bundle sheath and mesophyll cells. The current study mainly focused on the chlorenchyma tissue abutting such minor veins. The outer columnar layer exhibited features similar to the characteristics of palisade mesophyll cells, while the inner cuboid layer to the bundle sheath cells of a typical $C_4$ Kranz pattern. Cellular components of the inner chlorenchyma were centripetal and numerous, but starch-laden chloroplasts were rudimentary in the thylakoidal system. The outer chlorenchyma demonstrated normally developed chloroplasts having well-stacked thylakoids and plastoglobuli. Branched and complicated plasmodesmata frequently occurred in thick interfaces of the two layers, implying the active movement of the photosynthates between them. The present data were mostly congruent with one of the structural features of the C4 subtypes , NADP-ME type, reported in the $C_4$ pattern. The Kranz pattern encountered in this Salsola probably has been directly related to the structural modification that occurred during a functional adaptation to the $C_4$ photosynthesis.

  • PDF

A Study of Structure of the Sucker of Common Freshwater Goby (Rhinogobius brunneus) and Triden Goby (Tridentiger brevispinis) (밀어 (Rhinogobius brunneus)와 민물검정망둑 (Tridentiger brevispinis)의 흡반 구조에 관한 연구)

  • Kim, Taik-Young;Son, Sung-Won;Choi, Byung-Jin;Park, Chang-Hyun
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • The structures of sucker of two Cobiidae; Common freshwater goby and Triden goby were observed by light and electron microscopy. Scanning electron microscopy revealed the characteristic narrow ridges and grooves on the apical portion of sucker of Common freshwater goby, and hexagonal structures similar to a honeycomb representing the intercellular junctional area on the middle and basal portions. Some ridges were present on the epithelial surface on the middle and basal portions. The openings of several mucus-secreting cells were present between main epithelial cells. Light and transmission electron microscopy revealed the core of the fin; soft rays with a surrounding dense collagen fiber layer. Some loosely arranged fibers (collagen fiber) radiated toward the surface epithelium. The surface epithelium was cuboidal or columnar in shape. Scanning electron microscopy revealed the coiled irregular ridges and grooves, which was less developed and had sparser distribution than in Common freshwater goby, on the apical portion of sucker of Triden goby. The middle and basal portions had honeycomb structures as in Common freshwater goby. Fewer mucoussecreting cells were present. Light and transmission electron microscopy showed the core of soft rays, dense collagen fiber layer, however, the radiating fibers observed in the Common freshwater goby was rarely present. The sucker was thinner because the epithelium is squamous or polygonal in shape and rare presence of the radiating fibers.

Morphological Changes of Accessory Genital Organs Induced by Treatment with Different Concentration of Estrogen Receptor Agonist in the Male Mouse (수컷 생쥐에서 에스트로겐 수용체 촉진제의 농도별 투여에 의한 부속 생식샘의 형태학적 변화)

  • Cho, Young-Kuk;Han, Ji-Yeon;Cho, Hyun-Wook
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.265-276
    • /
    • 2011
  • The aim of the present study is to validate the effects of treatment with different concentration of estrogen receptor alpha agonist, propyl pyrazole triol (PPT) on the weight and histological structure in the accessory reproductive organs (ventral prostate, seminal vesicle and preputial gland) of male mouse. Treated groups received different doses of PPT 0.01 mg, 0.1 mg and 1.0 mg per week respectively, for 3, 5, and 8 weeks. In general, the weight of reproductive organs was increased in PPT 0.01 mg and 0.1 mg treatment, however decreased in PPT 1.0 mg treatment. Epithelial tissues in the ventral prostate were changed from simple columnar epithelium to squamous or cuboidal epithelium in the treated groups. On week 3, PPT groups caused decrease of epithelial cell height in the ventral prostate. Lumen of the seminal vesicle was narrowed in the treated group. Epithelial cell height of seminal vesicle was reduced in the PPT treatment. Acinus tissue of preputial gland in PPT 1.0 mg treatment was dramatically atrophied than that of control group. These results are useful as a reference to determine the administration concentration of PPT in experiments for understanding the physiological functions of estrogen in the male.

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.