• Title/Summary/Keyword: Column-beam moment ratio

Search Result 88, Processing Time 0.025 seconds

Structural Performance on the Self-centering Connections with Different Conditions of PT Strands (긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구)

  • Jung, Mi Jin;Yoon, Sung Kee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • In this study, cyclic loading analysis was conducted in order to understand the behavior of self-centering connections based on the number of PT(posttensioning) strands and initial posttensioning force. The initial posttensioning force needs to be above the yield moment of an angle for obtaining noticeable self-centering effect and it is proper that decompression moment ratio needs to be below 0.35 to minimize the residual displacement of major elements. As the number of PT strands increased, self-centering capacity also improved since initial posttensiong force in each PT strand has been decreased. It is also appropriate that initial posttensiong force needs to be less than or equal to 75% of yield strength of PT strands.

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

P-M Interaction Curve for Square CFTs with High-Strength Concrete (고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선)

  • Choi, Young Hwan;Kim, Kang Su;Choi, Sung Mo;Lee, Sangsup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2007
  • In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

FEA of Beam-Column Connection with Bolted Web (웨브를 볼트로 접합한 보-기둥 접합부의 유한요소해석)

  • Shin, Kyung-Jae;Lim, Bo-Hyuk;Lee, Swoo-Heon;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.305-316
    • /
    • 2011
  • As the building structures are higher and bigger, the high-performance steels of high strength, toughness, and low yield ratio had been required and developed. In this paper the behavior of the moment connection with bolted web and high strength steel was studied by using the finite-element analysis computer program of ABAQUS. The analysis model is based on the test results and the same cyclic load history was applied at the FE(Finite Element) model until it failed in the test. Through the FEA, several indicators hardly measured from the test were acquired. These indicators related to stress and strain were selected from three plastic rotation stages: 0.003 rad, 0.03 rad, and final failure rotation. Specifically, at the final failure stage, the strain indicators producing the full plastic behavior were suggested as a mechanical property for steel.

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.