• 제목/요약/키워드: Column-beam connection

검색결과 499건 처리시간 0.028초

Cyclic shear test on a dowel beam-to-column connection of precast buildings

  • Magliulo, Gennaro;Ercolino, Marianna;Cimmino, Maddalena;Capozzi, Vittorio;Manfredi, Gaetano
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.541-562
    • /
    • 2015
  • This paper aims at developing the knowledge on the seismic behavior of dowel beam-to-column connections, typically employed in precast buildings in Europe. Despite the large diffusion of the industrial buildings, a high seismic vulnerability was exhibited by these structures, mostly due to the connection systems deficiencies, during some recent earthquakes (Emilia 2012, Turkey 2011). An experimental campaign was conducted on a typical dowel connection between an external column and a roof beam. In this paper, the performed cyclic shear test is described. According to the experimental results, the seismic response of the system is evaluated in terms of strength, stiffness and failure mechanism. Moreover, the complete damage pattern of the test is described by means of the instrumentations records. The connection failure occurred due to the concrete cover failure in the column (splitting failure). Such a mechanism corresponds to a negligible energy dissipation capacity of the connection, compared to the overall seismic response of the structure. The experimental results are also compared with the results of a similar monotonic shear test, as well as with some literature relationships for predicting the strength of dowel connections under horizontal (seismic) loads.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

Experimental study on the seismic behavior in the connection between CFRT column and steel beam

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.365-374
    • /
    • 2000
  • The structural behavior of connections between concrete-filled rectangular tubular column (CFRT column) and steel beam has been studied in this paper through sub-assemblage loading tests. It is found that the sub-assemblages exhibit ductile restoring force characteristics under seismic loading. A formula for the prediction of the yield strength of each member in the connection is proposed by using the yield line theory under the assumption of a simple stress transfer mechanism. It is shown that the proposed formula can produce a reasonable prediction while providing a basis for further investigation.

강재 원형기둥-상자형보 접합부의 다이아프램 설계법 (Diaphragm Design Method of Steel Box Beam and Circular Column Connections)

  • 김영필;황원섭;박문수
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.123-135
    • /
    • 2006
  • 이 연구에서는 원형기둥-상자형보 접합부의 다이아프램 형상에 따른 거동특성과 다이아프램 설계방법에 관한 것이다. 강재 원형기둥-상자형보 접합부의 다이아프램은 상자형보 하부플랜지로부터 전달되는 집중력을 지지하게 되며, 보와 기둥의 강도 뿐만아니라 접합부의 거동에 큰 영향을 미치게 된다. 기존의 연구에서는 부정정 곡선보 모델로부터 유도된 다이아프램의 응력계산식이 제시되어 있으나, 설계식으로 활용되기에는 계산과정이 난해하고 유도과정이 비합리적이다. 또한 접합부 강도에 대한 다이 아프램의 역할을 고려하지 않음으로써 다이아프램의 합리적인 설계가 이루어 지지 못하고 있다. 따라서 이 연구에서는 접합부 다이아프램의 설계변수에 대한 비선형 유한요소 해석을 수행하여, 다이아프램의 형상에 따른 강도특성을 검토하였다. 또한 원형기둥-상자형보, 접합부 다이아프램의 이론식이 접합부의 실제 거동과 큰 차이를 나타냄을 확인하였고, 보와 기둥 및 다이아프램 강성을 고려한 강재 원형기둥 접합부 다이아프램의 설계방법을 제안하였다.

다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구 (Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm)

  • 강현식;문태섭
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

Experimental evaluation of steel connections with horizontal slit dampers

  • Lor, Hossein Akbari;Izadinia, Mohsen;Memarzadeh, Parham
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.79-90
    • /
    • 2019
  • This study introduces new connections that connect the beam to the column with slit dampers. Plastic deformations and damages concentrate on slit dampers. The slit dampers prevent plastic damages of column, beam, welds and panel zone and act as fuses. The slit dampers were prepared with IPE profiles that had some holes in the webs. In this paper, two experimental specimens were made. In first specimen (SDC1), just one slit damper connected the beam to the column and one IPE profile with no holes connected the bottom flange of the beam to the column. The second specimen (SDC2) had two similar dampers which connected the top and bottom flange of the beam to the column. Cyclic loading was applied on Specimens. The cyclic displacements conditions continued until 0.06 radian rotation of connection. The experimental observations showed that the bending moment of specimen SDC2 increased until 0.04 story drift. In specimen SDC1, the bending moment decreases after 0.03 story drift. Test results indicate the high performance of the proposed connection. Based on the results, the specimen with two slit damper (SDC2) has higher seismic performance and dissipates more energy in loading process than specimen SDC1. Theoretical formulas were extended for the proposed connections. Numerical studies have been done by ABAQUS software. The theoretical and numerical results had good agreements with the experimental data. Based on the experimental and numerical investigations, the high ductility of connection is obtained from plastic damages of slit dampers. The most flexural moment of specimen SDC1 occurred at 3% story drift and this value was 1.4 times the plastic moment of the beam section. This parameter for SDC2 was 1.73 times the plastic moment of the beam section and occurred at 4% story drift. The dissipated energy ratio of SDC2 to SDC1 is equal to 1.51.

Evaluation the behavior of pre-fabricated moment connection with a new geometry of pyramidal end block under monotonic and cyclic loadings

  • Kazemi, Seyed Morteza;Sohrabi, Mohammad Reza;Kazemi, Hasan Haji
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.391-404
    • /
    • 2018
  • Researchers have been long studying new building implementation methods to improve the quality of construction, reduce the time of assembly, and increase productivity. One of these methods is the use of modular pre-fabricated structural forms that are composed of a beam, column, short column, pyramidal end block, and connection plates. In this study, a new geometry for the pyramidal end block was proposed that helps facilitate the assembly procedure. Since the proposed configuration affects the performance of this form of connection, its behavior was evaluated using finite element method. For this purpose, the connection was modeled in ABAQUS and then validated by comparing the outputs with experimental results. The research proceeded through analyzing 16 specimens under monotonic and cyclic loading. The results indicated that using the pyramidal end block not only makes the assembly process easier but also reduces the out-of-plane displacement of the short column webs and the vertical displacement of beam end. By choosing appropriate section properties for column and beam, the connection can bear a rotation up to 0.01 radians within its inelastic region and a total of 0.04 radians without any significant reduction in its bearing capacity.

모듈러 골조용 비대칭 기둥-보 접합부에 대한 거동 평가 (Behavior Evaluation on the Non-symmetric Composite Column for Unit Modular Frames)

  • 박금성;이상섭;배규웅;문지호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.36-44
    • /
    • 2019
  • 본 연구의 목적은 강 - PC 복합모듈 골조를 구성하는 프레스 성형된 비대칭 기둥과 보 접합부의 구조적 성능을 평가하는 것이다. 모듈러 골조를 구성하는 대부분의 접합부는 폐쇄형의 사각형 강재 기둥 단면을 주로 사용한다. 폐쇄형의 기둥 단면을 사용한 기둥-보 접합부는 시공성을 감소시키고 내화성을 확보하는데 어려움이 있다. 이러한 단점을 극복하기 위하여 강판을 프레스로 성형하여 비대칭 개방형 단면 내에 콘크리트를 충진하는 것이다. 프레스 성형된 비대칭 기둥-보 접합부의 구조적 성능을 조사하기 위해 총 4개의 실험체를 제작하였다. 실험결과, 비대칭 기둥의 구조적 성능과 거동이 비대칭 기둥 단면이 합성되는지 또는 기둥의 폭-두께 비율에 따라 달라지는지를 보여주었다. 프레스 성형된 비대칭 기둥-보 접합부의 구조적 성능은 실험결과와 이론식을 비교하여 평가하였다.

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.