• 제목/요약/키워드: Column type

Search Result 1,208, Processing Time 0.026 seconds

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

Experimental study on seismic performance of concrete filled tubular square column-to-beam connections with combined cross diaphragm

  • Choi, Sung-Mo;Yun, Yeo-Sang;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.303-317
    • /
    • 2006
  • The connection with combined cross diaphragm is developed for the connection of square CFT column and steel beam and proposed to be used for the frame with asymmetric span length. The structural characteristics of this connection lie in the penetration of the beam flange in the direction of major axis through the column for the smooth flow of stress. The purpose of this study is to analyze the dynamic behavior and stress flow of suggested connection and to evaluate the resistance to shock of connection. Four T-type CFT column-to-beam specimens; two with combined cross diaphragm and the others with interior and through diaphragms, the existing connection types, were made for cyclic load test guided by the load program of ANSI/AISC SSPEC 2002. The results show that the proposed connection is more efficient than existing ones in terms of strength, stress flow and energy absorption and satisfies the seismic performance required in the region of weak/moderate earthquakes.

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers

  • Shamsi, Mohammad;Ghanbari, Ali;Nazariafshar, Javad
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.329-342
    • /
    • 2019
  • In this paper, the effect of a group of sand columns in the loose soil bed using triaxial tests was studied. To investigate the effect of geotextile reinforcement type on the bearing capacity of these sand columns, Vertical encased sand columns (VESCs) and horizontally reinforced sand columns (HRSCs) were used. Number of sixteen independent triaxial tests and finite element simulation were performed on specimens with a diameter of 100 mm and a height of 200 mm. Specimens were reinforced by either a single sand column or three sand columns with the same area replacement ratio (16%) to evaluate the Influence of the column arrangement. Effect the number of sand columns, the length of vertical encasement and the number of horizontal reinforcing layers were investigated, in terms of bearing capacity improvement and economy. The results indicated that the ultimate bearing capacity of the samples with three ordinary sand columns (OSCs) is eventually about 11% more than samples with an OSC. Also, comparison of the column reinforcing modes showed that four horizontal layers of geotextile achieved similar performance to a vertical encasement geotextile at the 50% of the column height, from the viewpoint of strength improvement, while from the viewpoint of economy, the geotextile needed for encasing the single column is around 2.5 times of the geotextile required for four layers.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.