• Title/Summary/Keyword: Column retrofitted

Search Result 106, Processing Time 0.018 seconds

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Hysteresis Characteristics of RC Exterior Beam-Column Joint Retrofitted with Haunch (헌치를 이용하여 보강된 RC 보-기둥 외부접합부의 반복이력 특성)

  • Lee, Young Wook;Park, Hyeong Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.115-123
    • /
    • 2017
  • To investigate the cyclic characteristics of the retrofitted exterior joints of RC frame with haunch, 70% scaled 6 beam-column exterior joint subassemblies were designed according to design guideline according to 1988 and tested with cyclic loading up to 3.5% story drift ratio. During the experiments axial forces are applied to columns to simulate gravity load. Experimental results shows that the strength of retrofitted specimens was increased steadily until 2.5% story drift ratio and their strengths increased more than 1.7 times of the non-retrofitted in case that main bar was bent away from exterior joint. The joint strength and effective stiffness of the retrofitted specimen was increased and results in more deformation capacity compared to the non-retrofitted.

Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System (FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험)

  • Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Numerical Model of FRP Jacketed RC Column Under Blast Loading Scenario (폭발 하중에 대한 FRP 재킷 시스템이 보강된 철근콘크리트 기둥 해석 모델 개발)

  • Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.67-79
    • /
    • 2021
  • This paper aims to develop numerical models for seismically-deficient reinforced concrete columns retrofitted using a fiber-reinforced polymer jacketing system under blast loading scenarios. To accomplish the research goal, a coupling model reproducing blast loads was developed and implemented to the column model. The column model was validated with a past experimental study, and the blast responses were compared to the numerical responses produced by past researchers. The validated modeling method was implemented to the non-retrofitted and retrofitted column models to estimate the effectiveness of the retrofit system. Based on the numerical responses, the retrofit system can significantly reduce the peak dynamic responses under a given blast loading scenario.

Experimental investigation of reinforced concrete columns retrofitted with polyester sheet

  • Chang, Chunho;Kim, Sung Jig;Park, Dongbyung;Choi, Sunghun
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.237-250
    • /
    • 2014
  • This paper experimentally investigates the seismic performance of RC columns retrofitted with Super Reinforcement with Flexibility (SRF), which is a polyester fiber reinforced polymer. A total of three specimens with a scale factor of 1/2 were constructed and tested in order to assess the structural behavior of the retrofitted RC columns. One specimen was a non-seismically designed column without any retrofit, while others were retrofitted with either one or two layers of the polyester belt with urethane as the adhesive. Static cyclic testing with a constant axial load was conducted to assess the seismic performance of the retrofitted RC columns. It is concluded that the SRF retrofitting method increases the strength and ductility of the RC columns and can also impact on the failure mode of the columns.

Seismic Performance of Replaceable Steel Brace System Subjected to Combined Loadings (복합하중을 고려한 교체 가능한 강재 브레이스 시스템의 내진성능)

  • Ro Kyong Min;Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.43-50
    • /
    • 2023
  • This study aims to assess the seismic performance of retrofitted reinforced concrete columns using a Replaceable Steel Brace (RSB) system, subjected to combined axial, lateral, and torsional loadings. Through experimental testing, one non-retrofitted concrete column specimen and two retrofitted specimens with variable sliding slot lengths were subjected to eccentric lateral loads to simulate realistic seismic loading. The retrofitted specimens with RSBs exhibited enhanced resistance against shear cracking, effective torsional resistance, and demonstrated the feasibility of easy replacement. The RSB system substantially improved seismic performance, achieving approximately 1.7 times higher load capacity and 3.5 times greater energy dissipation compared to non-retrofitted column, thus validating its efficacy under combined loading conditions.

Retrofitting of exterior RC beam-column joints using ferrocement jackets

  • Bansal, Prem Pal;Kumar, Maneek;Dar, Manzoor Ahmed
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.313-328
    • /
    • 2016
  • Beam-column joints are recognized as one of the most critical and vulnerable zones of a Reinforced Concrete (RC) moment resisting structure subjected to seismic loads. The performance of the deficient beam-column joints can be improved by retrofitting these joints by jacketing them with varied materials like concrete, steel, FRP and ferrocement. In the present study strength behavior of RCC exterior beam-column joints, initially loaded to a prefixed percentage of the ultimate load, and retrofitted using ferrocement jacketing using two different wrapping schemes has been studied and presented. In retrofitting scheme, RS-I, wire mesh is provided in L shape at top and at bottom of the beam-column joint, whereas, in scheme RS-II along with wire mesh in L shape at top and bottom wire mesh is also provided diagonally to the joint. The results of these retrofitted beam-column joints have been compared with those of the controlled joint specimens. The results show an improvement in the ultimate load carrying capacity and yield load of the retrofitted specimens. However, no improvement in the ductility and energy absorption has been observed.

An Experimental Study on Seismic Performance of Reinforced Concrete Beam-Column Retrofitted with Replaceable Steel Haunch System (교체 가능한 강재 헌치 시스템으로 보강한 철근 콘크리트 보-기둥 구조물의 내진성능에 관한 실험적 연구)

  • Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2024
  • The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.

Experimental study on seismic behavior of RC beam-column joints retrofitted using prestressed steel strips

  • Yang, Yong;Chen, Yang;Chen, Zhan;Wang, Niannian;Yu, Yunlong
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.499-511
    • /
    • 2018
  • This paper aims to investigate the seismic performance of the prestressed steel strips retrofitted RC beam-column joints. Two series of joint specimens were conducted under compression load and reversed cyclic loading through quasi-static tests. Based on the test results, the seismic behavior of the strengthened joints specimens in terms of the failure modes, hysteresis response, bearing capacity, ductility, stiffness degradation, energy dissipation performance and damage level were focused. Moreover, the effects of the amount of the prestressed steel strips and the axial compression ratio on seismic performance of retrofitted specimens were analyzed. It was shown that the prestressed steel strips retrofitting method could significantly improve the seismic behavior of the RC joint because of the large confinement provided by prestressed steel strips in beam-column joints. The decrease of the spacing and the increase of the layer number of the prestressed steel strips could result in a better seismic performance of the retrofitted joint specimens. Moreover, increasing the axial compression ration could enhance the peak load, stiffness and the energy performance of the joint specimens. Furthermore, by comparison with the specimens reinforced with CFRP sheets, the specimens reinforced with prestressed steel strips was slightly better in seismic performance and cost-saving in material and labor. Therefore, this prestressed steel strips retrofitting method is quite helpful to enhance the seismic behavior of the RC beam-column joints with reducing the cost and engineering time.