• Title/Summary/Keyword: Column fracture distance

Search Result 5, Processing Time 0.017 seconds

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Flexure Strength of Various Colored and Uncolored Zirconia Ceramics for All-Ceramic Restoration (전부도재수복물을 위한 유색 및 무색 지르코니아 세라믹의 굴곡강도)

  • Oh, Sang-Chun;Lee, Hae-Hyoung;Shin, Mee-Ran;Lee, Il-Kwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2007
  • Purpose: This investigation was designed to estimate the flexure strength, density, and microstructure of the colored and uncolored zirconia oxide ceramics for fixed partial denture. Material and Methods: LAVATM All Ceramic(3M-ESPE, USA), Cercon Smart Ceramic(Dentsply, USA), and Z-match Ceramic(DentAim, Korea) were used for this study. All specimen was fabricated by ASTM C1161. After preparing $25{\times}2{\times}1.5mm$ of rectangular column and sitting rectangular column on universal test machine (UTM), external supporting point distance is 20.0 mm, internal supporting point distance is 10.0 mm. Specimen was loaded with 0.2 mm/min of cross head speed until fracture and at the time of broken of specimen, measuring loading value with PC software. Results: The results were obtained as follows: 1. Flexure strength of uncolored zirconia was higher than that of colored zirconia. 2. In uncolored zirconia, flexure strength of LAVATM Ceramic was more higher than the other ceramics, and it showed statistical difference between LAVATM Ceramic and Cercon Smart Ceramic (P<0.05). 3. In colored zirconia, flexure strength of LAVATM Ceramic was more higher than the other ceramics too, but they did not show statistical difference (p>0.05). 4. In Weibull analysis, Characterastic strength was showed highest value to uncolored LAVATM Ceramic and lowest value to Z-match ceramic, and Weibull modulus(m) of uncolored zirconia was higher than that of colored zirconia. 5. In XRD analysis, all group except Z-match showed high peak of t-ZrO2 but they did not show m-ZrO2. Colored zirconia group showed lower peak of t-ZrO2 than that of uncolored zirconia group.

Kinetic Study Of $La_2$O_3-A1_2O_3-SiO_2$ glass infiltration into Spinel Preforms (스피넬 전성형체의 $La_2$O_3-A1_2O_3-SiO_2$계 유리 침투 kinetic)

  • 이득용;장주웅;김병수;김대준;송요승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • Abstract Spinel powder having a particle size of 0.9$\mu$m was calcined for 30 min at $1300^{\circ}C$, followed by ball milling for 4h, to obtain the spinel particle size of 3.29$\mu$m. The die-pressed spinel was presintered at $1100^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at $1080^{\circ}C$ for 0~2 h to investigate the penetration kinetics in glass-spinel composite. The infiltration distance is parabolic in time due to capillarity. The strength and the fracture toughness of glassspinel composites were 317 MPa and 3.56 MPa $m^{1/2}$ respectively and dual microstructure of column (needle) and polygonal shapes as a result of recrystallization was observed due to the high calcination temperature.