• 제목/요약/키워드: Columbite methods

검색결과 2건 처리시간 0.014초

Columbite법으로 제조된 (Na,K,Li)(Nb,Ta,Sb)O3 세라믹스의 하소온도에 따른 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Ta,Sb)O3 Ceramics Manufactured Using Columbite Methods with Calcination Temperature)

  • 라철민;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제29권3호
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, in order to develop optimum composition ceramics with excellent piezoelectric properties, $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.823}Sb_{0.08}Ta_{0.037})O_3+0.3wt%Bi_2O_3+0.4wt%Fe_2O_3$ lead-free piezoelectric ceramics were synthesized by conventional soild-state method. The calcination temperature of columbite precursors were fabricated at temperature range from $950^{\circ}C$ to $1,150^{\circ}C$ and sintering aids with low melting point were added to densify these ceramics. Effect of calcination temperature on dielectric and piezoelectric properties of ceramics were investigated. the ceramics with B-site columbite precursors at temperature of $1,100^{\circ}C$ obtained the optimal values of $d_{33}=272$ [pC/N], $k_p=0.51$, $Q_m=102$, ${\varepsilon}_r=978$.

합성방법과 소결 온도가 PZNN-PZT 압전 세라믹스 소재특성에 미치는 영향 (Effects of the Mixing Method and Sintering Temperature on the Characteristics of PZNN-PZT Piezoelectric Ceramic Materials)

  • 김소원;정용정;이희철
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.487-493
    • /
    • 2018
  • The impact of different mixing methods and sintering temperatures on the microstructure and piezoelectric properties of PZNN-PZT ceramics is investigated. To improve the sinterability and piezoelectric properties of these ceramics, the composition of $0.13Pb((Zn_{0.8}Ni_{0.2})_{1/3}Nb_{2/3})O_3-0.87Pb(Zr_{0.5}Ti_{0.5})O_3$ (PZNN-PZT) containing a Pb-based relaxor component is selected. Two methods are used to create the powder for the PZNN-PZT ceramics. The first involves blending all source powders at once, followed by calcination. The second involves the preferential creation of columbite as a precursor, by reacting NiO with $Nb_2O_5$ powder. Subsequently, PZNN-PZT powder can be prepared by mixing the columbite powder, PbO, and other components, followed by an additional calcination step. All the PZNN-PZT powder samples in this study show a nearly-pure perovskite phase. High-density PZNN-PZT ceramics can be fabricated using powders prepared by a two-step calcination process, with the addition of 0.3 wt% MnO2 at even relatively low sintering temperatures from $800^{\circ}C$ to $1000^{\circ}C$. The grain size of the ceramics at sintering temperatures above $900^{\circ}C$ is increased to approximately $3{\mu}m$. The optimized PZNN-PZT piezoelectric ceramics show a piezoelectric constant ($d_{33}$) of 360 pC/N, an electromechanical coupling factor ($k_p$) of 0.61, and a quality factor ($Q_m$) of 275.