• Title/Summary/Keyword: Colpitts Oscillator

Search Result 30, Processing Time 0.023 seconds

Hartley-VCO Using Linear OTA-based Active Inductor

  • Jeong, Seong-Ryeol;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • An LC-tuned sinusoidal voltage-controlled oscillator (VCO) using temperature-stable linear operational transconductance amplifiers (OTAs) is presented. Its architecture is based on Hartley oscillator configuration, where the inductor is active one realized with two OTAs and a grounded capacitor. Two diode limiters are used for limiting amplitude. A prototype oscillator built with discrete components exhibits less than 3.1% nonlinearity in its current-to-frequency transfer characteristic from 1.99 MHz to 39.14 MHz and $220ppm/^{\circ}C$ frequency stability to the temperature drift over 0 to $75^{\circ}C$. The total harmonic distortion (THD) is as low as 4.4 % for a specified frequency-tuning range. The simulated phase noise of the VCO is about -108.9 dBc/Hz at 1 MHz offset frequency in frequency range of 0.4 - 46.97 MHz and property of phase noise of VCO is better than colpitts-VCO.

Wideband Colpitts Voltage Controlled Oscillator with Nanosecond Startup Time and 28 % Tuning Bandwidth for Bubble-Type Motion Detector (나노초의 발진 기동 시간과 28 %의 튜닝 대역폭을 가지는 버블형 동작감지기용 광대역 콜피츠 전압제어발진기)

  • Shin, Im-Hyu;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1104-1112
    • /
    • 2013
  • This paper presents a wideband Colpitts voltage controlled oscillator(VCO) with nanosecond startup time and a center frequency of 8.35 GHz for a new bubble-type motion detector that has a bubble-layer detection zone at the specific distance from itself. The VCO circuit consists of two parts; one is a negative resistance part with a HEMT device and Colpitts feedback structure and the other is a resonator part with a varactor diode and shorted shunt microstrip line. The shorted shunt microstrip line and series capacitor are utilized to compensate for the input reactance of the packaged HEMT that changes from capacitive values to inductive values at 8.1 GHz due to parasitic package inductance. By tuning the feedback capacitors which determine negative resistance values, this paper also investigates startup time improvement with the negative resistance variation and tuning bandwidth improvement with the reactance slope variation of the negative resistance part. The VCO measurement shows the tuning bandwidth of 2.3 GHz(28 %), the output power of 4.1~7.5 dBm and the startup time of less than 2 nsec.

Design and Implementation of a Chaotic Oscillator for UWB (UWB용 카오스 오실레이터의 설계 및 구현)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2136-2139
    • /
    • 2008
  • Chaotic oscillators can generate wide-band signals and the spectrum characteristics of the wide-band signals are not changed by switching on and off the output power of the oscillators. When communication systems use a chaotic oscillator, the communication system need not a local oscillator and a mixer used in conventional transceivers. Therefore the configuration of a communication system using a chaotic oscillator is simple and have the characteristics of low-power consumption. In this paper we design and implement a chaotic oscillator. And the test results of the implemented chaotic oscillator for UWB systems are presented. The implemented chaotic oscillator has -8.11dBm of the output power with 500MHz channel bandwidth at 3.4GHz of the center frequency and has about 410MHz of -10dB bandwidth.

A Study on Miniature VCO for 1.6GHz PCS Phone (1.6GHz PCS 단말기용 초소형 VCO에 대한 연구)

  • 권원현;김운용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.935-942
    • /
    • 2000
  • In this paper, miniature voltage-controlled oscillator(VCO) for 1.6GHz PCS band is designed and implemented. Colpitts type LC resonating oscillator is designed with multilayer PCB and circuit parameters are optimized using the circuit simulator. Using the optimized design parameters, miniature VCO with 6X6X1.8mm3 (0.065cc)dimensions is fabricated and experimented. Developed VCO has -1.67dBm $\pm$0.5dBm output power level in52.5MHz tunung range, and has -99.33dBc/Hz phase noise performance at 10 KHz frequency offset.

  • PDF

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

  • Yoo, Junghwan;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • This work describes the development and comparison of two phase-locked loops (PLLs) based on a 65-nm CMOS technology. The PLLs incorporate two different topologies for the output voltage-controlled oscillator (VCO): LC cross-coupled and differential Colpitts. The measured locking ranges of the LC cross-coupled VCO-based phase-locked loop (PLL1) and the Colpitts VCO-based phase-locked loop (PLL2) are 119.84-122.61 GHz and 126.53-129.29 GHz, respectively. Th e output powers of PLL1 and PLL2 are -8.6 dBm and -10.5 dBm with DC power consumptions of 127.3 mW and 142.8 mW, respectively. Th e measured phase noise of PLL1 is -59.2 at 10 kHz offset and -104.5 at 10 MHz offset, and the phase noise of PLL2 is -60.9 dBc/Hz at 10 kHz offset and -104.4 dBc/Hz at 10 MHz offset. The chip sizes are $1,080{\mu}m{\times}760{\mu}m$ (PLL1) and $1,100{\mu}m{\times}800{\mu}m$ (PLL2), including the probing pads.

Design of Regulated Low Phase Noise Colpitts VCO for UHF Band Mobile RFID System (UHF 대역 모바일 RFID 시스템에 적합한 저잡음 콜피츠 VCO 설계)

  • Roh, Hyoung-Hwan;Park, Kyong-Tae;Park, Jun-Seok;Cho, Hong-Gu;Kim, Hyoung-Jun;Kim, Yong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.964-969
    • /
    • 2007
  • A regulated low phase noise differential colpitts VCO(Voltage Controlled Oscillator) for mobile RFID system is presented. The differential colpitts VCO meets the dense reader environment specifications. The VCO use a $0.35{\mu}m$ technology and achieves tuning range $1.55{sim}2.053 GHz$. Measuring 910 MHz frequency divider output, phase noise performance is -106 dBcMz and -135dBc/Hz at 40 kHz and 1MHz offset, respectively. 5-bit digital coarse-tuning and accumulation type MOS varactors allow for 28.2% tuning range, which is required to cover the LO frequency range of a UHF Mobile RFID system, Optimum design techniques ensure low VCO gain(<45 MHz/V) for good interoperability with the frequency synthesizer. To the author' knowledge, this differential colpitts VCO achieves a figure of merit(FOM) of 1.93dB at 2-GHz band.

An Oscillator and a Mixer for 140-GHz Heterodyne Receiver Front-End based on SiGe HBT Technology

  • Yoon, Daekeun;Song, Kiryong;Kaynak, Mehmet;Tillack, Bernd;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • This paper reports a couple of key circuit blocks developed for heterodyne receiver front-ends operating near 140 GHz based on SiGe HBT technology. Firstly, a 123-GHz oscillator was developed based on Colpitts topology, which showed -5 dBm output power and phase noise of -107.34 dBc/Hz at 10 MHz. DC power dissipation was 25.6 mW. Secondly, a 135 GHz mixer was developed based on a modified Gilbert Cell topology, which exhibited a peak conversion gain of 3.6 dB at 1 GHz IF at fixed LO frequency of 134 GHz. DC power dissipation was 3 mW, which mostly comes from the buffer.

The Study on Single Injection Locking Phenomenon for Multi-Frequency Generator Design (다중 주파수 발생기 설계를 위한 단일 인젝션 락킹 현상에 관한 연구)

  • Jeong, Seung-Hyeon;Min, Kyeong-Han;Lee, Seon-Gyu;Jeong, Jin-Won;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1037-1044
    • /
    • 2019
  • This study describes injection locking phenomena for multi-frequency generator design. For the design of the multi-frequency generator, we describe the basic theory of injection locking phenomenon and conduct a single injection locking experiment based on it. The experiments was conducted by applying injection signals that vibrates consistently to oscillators which vibrates unstablely compared to injection signals. Injection signal was applied using a Howland current source and circuit was designed using a Colpitts oscillator. The results of the experiment showed that each oscillator oscillates reliable when injection signals(840kHz, 500kHz) are injected. Through the results of a single injection locking experiment, it is confirmed that injection locking phenomena can be applied in the design of the multi-frequency generator.

Analysis of Tank Oscillation Voltages of Sub-1V Series Tuned Varactor-Incorporating Balanced Common-Gate and Common-Drain Colpitts-VCO (서브-1V 직렬공진 바렉터 통합형 평형 공통 게이트와 공통 드레인 콜피츠 전압제어 발진기의 탱크 발진전압에 대한 해석)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.761-766
    • /
    • 2014
  • This study performs the analytical investigation of the oscillation voltages at the tanks of the series tuned varactor incorporating balanced common-drain, and common-gate Colpitts VCO which are able to work even at the sub-1V power supply voltages. The results the investigation predicts is verified by the simulation on the circuit behaviors of the two VCOs. The analytical investigation finds that the series tuned varactor incorporating balanced common-gate VCO generates greater oscillation voltage at the tank than the series tuned varactor incorporating balanced common-drain VCO does, which in turn is more suitable for generating the low phase noise oscillation signal from the sub-1V supply voltage than the series tuned varactor incorporating balanced common-drain VCO.