• Title/Summary/Keyword: Colorimetric sensor

Search Result 48, Processing Time 0.024 seconds

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye (나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서)

  • Jung, Suenghwa;Cho, Yeong Beom;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Propectives of Environmental Colorimetric-Sensors (환경색센서에 관한 기술 전망)

  • Kim, Younghun;Lee, Byunghwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.393-399
    • /
    • 2011
  • The electrochemical or optical sensors for environmental pollutants are developed over the past several years. Nowadays, the development of colorimetric sensing is particularly challenging since it requires no equipment at all as color changes can be detected by the naked eye. Visual detection can give immediate qualitative information and is becoming increasingly appreciated in terms of quantitative analysis. In addition, simple colorimetric-sensor have shown useful in the detection, identification, and quantification of volatile organic compounds(VOC) in gas phase or heavy metal ion in aqueous phase. In this review, we investigated the wide applications and some drawbacks of colorimetric-sensors. And thus, we try to suggest the methodologies of development approach of multi-functional and reversible colorimetric-sensor.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles (폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출)

  • Park, Moo-Kyung;Kim, Kyung-Woo;Ahn, Dong-June;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.348-351
    • /
    • 2011
  • In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

A New Rhodamine B Hydrazide Hydrazone Derivative for Colorimetric and Fluorescent "Off-On" Recognition of Copper(II) in Aqueous Media

  • Tang, Lijun;Guo, Jiaojiao;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.159-163
    • /
    • 2013
  • A new Rhodamine B hydrazide hydrazone 1 has been synthesized and investigated as a colorimetric and fluorescent "off-on" sensor for the recognition of $Cu^{2+}$ in $CH_3CN/H_2O$ (1:1, v/v, HEPES 10 mM, pH = 7.0) solution. Sensor 1 displayed highly selective, sensitive and rapid recognition behavior toward $Cu^{2+}$ among a range of biologically and environmentally important metal ions. Sensor 1 bind $Cu^{2+}$ via a 1:1 stoichiometry with an association constant of $1.92{\times}10^6\;M^{-1}$, and the detection limit is evaluated to be $7.96{\times}10^{-8}\;M$. The $Cu^{2+}$ recognition event is reversible and is barely interfered by other coexisting metal ions.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.