• Title/Summary/Keyword: Colorimetric change

Search Result 74, Processing Time 0.226 seconds

A Study for the Calculation of the Surface Chloride on the concrete by using Colorimetric method (비색판별법을 이용한 콘크리트의 표면염화물량 산정)

  • 이진우;이문환;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.815-820
    • /
    • 2001
  • This study is to set a new standard for using of the colorimetric method through grasping the character of the colorimetric method, and measuring the chloride concentration at the place of the change of color. Also, to predict chloride concentration around rebar and time reaching limit chloride concentration through measuring the chloride concentration of concrete surface by the colorimetric method and this study presents the new program of concrete degradation and diagnosis of the durability by salt damage. First the use of the colorimetric method was examinated, second the chloride concentration through slicing concrete submerged in artificial seawater for 6 months was measured. And the chloride concentration at the place of the change of color was calculated by using colorimetric method. Finally, the cloride concentration of the concrete surface was calculated.

  • PDF

Change of color transfer of Photochromic lens (Photochromic 렌즈의 광변색 이동)

  • Kim, Yong-Geun;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • To Photochoromic lens light irradiation side darkening status and fading status photo-transmittance decrease. If remove light irradiation, get into fading state and photo-transmittance has reversibility process that get back originally in state. Get CIE $L^*a^*b^*$ relationship colorimetric using darkening in Photochoromic lens and at fading process. Photochromism's spectrophotometer that produce itself. Darkening and fading state colorimetric ($a^*-b^*$) linear be curvy, and is gradidnt of (-) value. And change lineally. The colorimetric transfer amount is Blue ${\rightarrow}$ Yellow, Red ${\rightarrow}$ Green form. Colorimetric is low $b^*$ value than darkning state in fading state, and Photochromism's coodination transfer moves on the contrary with darkning state, photochoromism relationship estimation method about photochoromic lens can use by colorimetric difference about darkening and fading.

  • PDF

Colorimetric Determination of pH Values using Silver Nanoparticles Conjugated with Cytochrome c

  • Park, Jun-Su;Choi, In-Hee;Kim, Young-Hun;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3433-3436
    • /
    • 2011
  • Some of metal nanoparticles have the potential for use as colorimetric assays for estimating solution properties, such as pH and temperature due to localized surface plasmon (LSP) phenomena. This report describes the use of silver nanoparticles (AgNP) conjugated with cytochrome c (Cyt c) for the colorimetric determination of solution pHs. When the pH of a solution decreases, the Cyt c immobilized on the AgNP undergoes a conformational change, leading to a decrease in the interparticle distance between Cyt c-AgNP probes and consequent red-shift in LSP. As a result, the color of the Cyt c-AgNP probe solution changes from yellow to red and finally to a grayish blue in the pH range from 11 to 3. This gradual color change can be used to determine the pH of a solution over a wide pH range, compared to other colorimetric methods that use gold nanoparticles.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Role of Gel to Fluid Transition Temperatures of Polydiacetylene Vesicles with 10,12-Pentacosadiynoic Acid and Cholesterol in Their Thermochromisms

  • Kwon, Jun Han;Song, Ji Eun;Yoon, Bora;Kim, Jong Man;Cho, Eun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1809-1816
    • /
    • 2014
  • This study demonstrates gel-to-fluid transition temperatures of polydiacetylene bilayer vesicles could play important roles in their colorimetric transition temperatures. We prepared five types of polydiaceylene vesicles with 10,12-pentacosadiynoic acid (PCDA) and cholesterol (0-40 mol % of total content). From temperature-dependent observations of the optical signals (colors and UV-vis spectra), the blue-to-red colorimetric transition temperatures of polydiacetylene vesicles were decreased with the cholesterol contents. A further study with microcalorimetry and dynamic light scattering revealed that the polydiacetylene vesicles first underwent gel-to-fluid transitions, which were followed by event(s) responsible for the colorimetric transitions. Energies required for each event were quantified from analysis of the peaks in the microcalorimetry thermograms. The inclusion of cholesterol in the vesicles decreased both the gel-to-fluid and the colorimetric transition temperatures, suggesting that the colorimetric transition of the polydiacetylene vesicles was mediated by the former event although the event was not the direct reason for the color change.

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye (나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서)

  • Jung, Suenghwa;Cho, Yeong Beom;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Propectives of Environmental Colorimetric-Sensors (환경색센서에 관한 기술 전망)

  • Kim, Younghun;Lee, Byunghwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.393-399
    • /
    • 2011
  • The electrochemical or optical sensors for environmental pollutants are developed over the past several years. Nowadays, the development of colorimetric sensing is particularly challenging since it requires no equipment at all as color changes can be detected by the naked eye. Visual detection can give immediate qualitative information and is becoming increasingly appreciated in terms of quantitative analysis. In addition, simple colorimetric-sensor have shown useful in the detection, identification, and quantification of volatile organic compounds(VOC) in gas phase or heavy metal ion in aqueous phase. In this review, we investigated the wide applications and some drawbacks of colorimetric-sensors. And thus, we try to suggest the methodologies of development approach of multi-functional and reversible colorimetric-sensor.

Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion (중금속 검지를 위한 디티존 기능화된 폴리스티렌 제조)

  • Shin, Hyeon Ho;Kim, Younghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.243-246
    • /
    • 2015
  • Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multi-colorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

Urea Receptors which Have Both a Fat Brown RR and a Nitrophenyl Group as a Signaling Group

  • Lee, Sung-Kyu;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3031-3033
    • /
    • 2009
  • A new colorimetric anion sensor 1 has been synthesized based on both Fat brown RR dye and a nitrophenyl group. This new receptor 1 could recognize the presence of fluoride ion effectively and selectively by the change of color of solution. In addition, receptor 1 shows higher affinity for acetate, dihydrogenphosphate, and hydrogensulfate than the other anions such as chloride, bromide, iodide, perchlorate, and nitrate in acetonitrile.