• 제목/요약/키워드: Colorectal cancer cell

검색결과 359건 처리시간 0.033초

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway

  • Lee, Jun Hee;Yun, Chul Won;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.313-321
    • /
    • 2018
  • Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein ($PrP^C$) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, $PrP^C$ expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, $PrP^C$ increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, $PrP^C$ inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of $PrP^C$ triggered apoptosis via the activation of caspase-3. These results indicate that $PrP^C$ plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with $PrP^C$ targeting may yield efficacious treatments of colorectal cancer.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

HOCl Oxidation-modified CT26 Cell Vaccine Inhibits Colon Tumor Growth in a Mouse Model

  • Zhou, Rui;Huang, Wen-Jun;Ma, Cong;Zhou, Yan;Yao, Yu-Qin;Wang, Yu-Xi;Gou, Lan-Tu;Yi, Chen;Yang, Jin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4037-4043
    • /
    • 2012
  • Despite progress in elucidating mechanisms associated with colorectal cancer and improvement of treatment methods, it remains a frequent cause of death worldwide. New and more effective therapies are therefore urgently needed. Recent studies have shown that immunogenicity of whole ovarian tumor cells and subsequent T cell response were potentiated by oxidation modification with hypochlorous acid (HOCl) in vitro and ex vivo. These results prompted us to investigate the protective antitumor response with an HOCl treated CT26 colorectal cancer cell vaccine in an in vivo mouse model. Administration of HOCl modified vaccine triggered robust antitumor immunity to autologous tumor cells in mice and prolonged survival period significantly. In addition, increased necrosis and apoptosis were found in tumor tissue from the oxidation group. Interestingly, ELISPOT assays showed that specific T cell responses were not elicited in response to the immunizing cellular antigen, in contrast to raising sera antibody titer and antibody binding activity shown by ELISA assay and flow cytometry. Further evaluation of the mechanisms underlying HOCl modified vaccine mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results combined with previous studies suggest that HOCl oxidation modified whole cell vaccine has wide applicability as a cancer vaccine because it can target both T cell- and B cell-specific responses. It may thus represent a promising approach for the immunotherapy of colorectal cancer.

Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells

  • Amiri, Ahmad;Namavari, Mehdi;Rashidi, Mojtaba;Fahmidehkar, Mohammad Ali;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.565-570
    • /
    • 2015
  • Breast and colorectal cancers rank high in Iran as causes of mortality. Most of the current treatments are expensive and non-specific. The potential anticancer properties of common home gecko, Cyrtopodion scabrum, were investigated in this study. The effects of C. scabrum extract on proliferation, viability and migration of the colorectal cancer (SW-742), breast cancer (MCF-7) and normal (MSC) cell lines were investigated using MTT and in vitro wound healing assay. $IC_{50}$ values calculated for the extract were $559{\pm}28.9{\mu}g/mL$ for MCF-7 and $339{\pm}11.3{\mu}g/mL$ for SW-742. No toxic effects on the normal control cells were observed. MCF-7 and SW-742 cell growth was inhibited by 32.6% and 62%, under optimum conditions, compared to the untreated control cells. The extract also decreased the motility and migration ability of both cancer cell lines, with no significant effects on the normal control cells. Data suggest C. scabrum extract as a useful natural resource for targeting cancer cells specifically.

microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study

  • Tanoglu, Alpaslan;Balta, Ahmet Ziya;Berber, Ufuk;Ozdemir, Yavuz;Emirzeoglu, Levent;Sayilir, Abdurrahim;Sucullu, Ilker
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1851-1855
    • /
    • 2015
  • Background: There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. Materials and Methods: The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). Conclusions: Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.

ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis

  • Przemyslaw, Leszczynski;Boguslaw, Hendrich Andrzej;Elzbieta, Szmida;Malgorzata, Sasiadek Maria
    • BMB Reports
    • /
    • 제46권3호
    • /
    • pp.139-150
    • /
    • 2013
  • The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Structural Maintenance of Chromosomes 4 is a Predictor of Survival and a Novel Therapeutic Target in Colorectal Cancer

  • Feng, Xiao-Dong;Song, Qi;Li, Chuan-Wei;Chen, Jian;Tang, Hua-Mei;Peng, Zhi-Hai;Wang, Xue-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9459-9465
    • /
    • 2014
  • Background: Structural maintenance of chromosomes 4 (SMC-4) is a chromosomal ATPase which plays an important role in regulate chromosome assembly and segregation. However, the role of SMC-4 in the incidence of malignancies, especially colorectal cancer is still poorly understood. Materials and Methods: We here used quantitative PCR and Western blot analysis to examine SMC-4 mRNA and protein levels in primary colorectal cancer and paired normal colonic mucosa. SMC-4 clinicopathological significance was assessed by immunohistochemical staining in a tissue microarray (TMA) in which 118 cases of primary colorectal cancer were paired with noncancerous tissue. The biological function of SMC-4 knockdown was measured by CCK8 and plate colony formation assays. Fluorescence detection has been used to detect cell cycling and apoptosis. Results: SMC-4 expression was significantly higher in colorectal cancer and associated with T stage, N stage, AJCC stage and differentiation. Knockdown of SMC-4 expression significantly suppressed the proliferation of cancer cells and degraded its malignant degree. Conclusions: Our clinical and experimental data suggest that SMC-4 may contribute to the progression of colorectal carcinogenesis. Our study provides a new therapeutic target for colorectal cancer treatment.

홍화가 인체 대장암세포에 미치는 효과 (Effects of Carthami Flos on Human Colorectal Adenocarcinoma Cells)

  • 한송이;김정아;송호준;채한;권영규;김병주
    • 한국한의학연구원논문집
    • /
    • 제17권2호
    • /
    • pp.129-134
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the anti-cancer effects of Carthami Flos in some kinds of human colorectal adenocarcinoma cells. Method : We used two kinds of human colorectal adenocarcinoma cell lines, such as HT-29 and WiDr cells. We examined cell death by MTT assay and observed the morphological changes with Carthami Flos. Result : We showed that the combination of sub-optimal doses of Carthami Flos and cisplatin noticeably suppresses in HT-29 cells and doxorubicin in WiDr cells. Furthermore, we studied the caspase 3 activity to identify the apoptosis. Conclusion : Our findings provide insight into unraveling the effects of Carthami Flos in human colorectal adenocarcinoma cells and developing therapeutic agents against colorectal cancer.