• Title/Summary/Keyword: Colorectal cancer cell

Search Result 361, Processing Time 0.029 seconds

Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells (인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석)

  • Kim Mi-Young;Son Jung-Kyu;Lee Suk-Kyeong;Ku Hyo-Jeong
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells (재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구)

  • Park, Ji Hye;Yun, Jisoo;Heo, Jeong;Hwang, Tae Ho;Kwon, Sang Mo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.835-846
    • /
    • 2016
  • Chemo-resistance is the biggest issue of effective cancer therapy. ABCG2 is highly correlated with multi-drug resistance, and represent a typical phenotype of multiple cancer stem-like cells. Accumulating evidence recently reported that oncolytic viruses represent a new strategy for multiple aggressive cancers and drug resistant cancers including cancer stem cell-like cells and ABCG2 expressing cells. In this study, we generated an evolutionally engineered vaccinia virus, SLJ-496, for drug-resistant cancer therapy. We first showed that SLJ-496 treatment enhanced tumor affinity using cytopathic effect assay, plaque assay, as well as cell viability assay. Next, we clearly demonstrated that in vitro SLJ-496 treatment represents significant cytotoxic effect in multiple cancers including colorectal cancer cells (HT-29, HCT-116, HCT-8), gastric cancer cells (AGS, NCI-N87, MKN-28), Hepatocellular carcinoma cells (SNU-449, SNU-423, SNU-475, HepG2), as well as mesothelioma cell (NCI-H226, NCI-H28, MSTO-221h). Highly ABCG2 expressing HT-29 cells represent cancer stem like phenotype including stem cell marker expression, and self-renewal bioactivities. Interestingly, we demonstrated that in vitro treatment of SLJ-496 showed significant cytotoxicity effect, as well as viral replication capacity in ABCG2 overexpressing cell. In addition, we also demonstrated the cytotoxic effect of SLJ-496 in Adriamycin-resistant cell lines, SNU-620 and ADR-300. Taken together, these findings provide us a pivotal clue that cancer therapy using SLJ-496 vaccinia virus might be new therapeutic strategy to overcome ABCG2 expressing cancer stem-like cell and multiple chemo-resistance cancer cells.

The Polymorphism of Hypoxia-inducible Factor-1a Gene in Endometrial Cancer

  • Kafshdooz, Leila;Tabrizi, Ali Dastranj;Mohaddes, Seyyed Mojtaba;Kafshdooz, Tayebeh;Akbarzadeh, Abolfazl;Ghojazadeh, Morteza;Gharesouran, Jalal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10393-10396
    • /
    • 2015
  • Background: Endometral carcinoma is the most common malignant tumor of the female genital tract and the fourth most common cancer in women after breast, colorectal and lung cancers Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates cellular response to hypoxia HIF-1 plays important roles in the development and progression of cancer through activation of various genes that are involved in crucial aspects of cancer biology, including angiogenesis, energy metabolism, vasomotor function, erythropoiesis, and cell survival. In this study, we aimed to investigate the association between HIF-1 1772 C/T polymorphisms and endometrial cancer. Materials and Methods: 75 patients with endometrial carcinoma and 75 patients whose underwent hysterectomy for non tumoral indication selected for evaluation of HIF-1 1772 C/T polymorphisms by PCR-RFLP and sequencing. Results: For the 1772 C/T polymorphism, the analysis showed that the T allele and genotype TT were significantly associated with endometrial cancer risk. Conclusions: Our results suggest that the C1772T polymorphism of the HIF-1a may be associated with endometrial cancers.

Effects of Heat Shock Treatment on Enzymatic Proteolysis for LC-MS/MS Quantitative Proteome Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Jang, Young-Su;Kim, Hyojin;Kim, Hwan-Mook;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Various efforts have been developed to improve sample preparation steps, which strongly depend on hands-on processes for accurate and sensitive quantitative proteome analysis. In this study, we carried out heating the sample prior to trypsin digestion using an instrument to improve the tryptic digestion process. The heat shock generated by the system efficiently denatured proteins in the sample and increased the reproducibility in quantitative proteomics based on peptide abundance measurements. To demonstrate the effectiveness of the protocol, three cell lines (A human lung cancer cell line (A549), a human embryonic kidney cell line (HEK293T), and a human colorectal cancer cell line (HCT-116)) were selected and the effect of heat shock was compared to that of normal tryptic digestion processes. The tryptic digests were desalted and analysed by LC-MS/MS, the results showed 57 and 36% increase in the number of identified unique peptides and proteins, respectively, than conventional digestion. Heat shock treated samples showed higher numbers of shorter peptides and peptides with low inter-sample variation among triplicate runs. Quantitative LC-MS/MS analysis of heat shock treated sample yielded peptides with smaller relative error percentage for the triplicate run when the peak areas were compared. Exposure of heat-shock to proteomic samples prior to proteolysis in conventional digestion process can increase the digestion efficiency of trypsin resulting in production of increased number of peptides eventually leading to higher proteome coverage.

UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro

  • Wu, Ting-Feng;Zhang, Wei;Su, Zuo-Peng;Chen, San-Song;Chen, Gui-Lin;Wei, Yong-Xin;Sun, Ting;Xie, Xue-Shun;Li, Bin;Zhou, You-Xin;Du, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5137-5142
    • /
    • 2012
  • UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down-regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.

Antiproliferation effects of ethanol extract of garlic peels on human cancer cell lines (마늘껍질 70% 에탄올 추출물의 인간 암세포 증식억제 활성)

  • Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.289-293
    • /
    • 2017
  • Ethanol extract of garlic peels (GPE) was investigated for its antiproliferative effects on human cancer cell lines. Human lung cancer cell line A549 treated with $500{\mu}g/mL$ GPE resulted in the growth inhibition of A549 by 90%. In stomach cancer cell AGS proliferation inhibition activity, GPE showed 45% and 71% inhibition of AGS growth at $1,000{\mu}g/mL$ and $2,000{\mu}g/mL$, respectively. GPE inhibited the growth of the breast cancer cells MCF-7 effectively at low concentration and showed 78% and 90% inhibitions of MCF-7 growth at $200{\mu}g/mL$ and $500{\mu}g/mL$, respectively. GPE showed very significant antiproliferation effect on liver cancer cell line Hep3B and inhibited Hep3B cell growth by 57% at $100{\mu}g/mL$, and the inhibition's rate increased up to 87% at $500{\mu}g/mL$. Antiproliferation effect of GPE on colorectal cancer cell HT-29 showed 15% reduction of HT-29 cell growth at $200{\mu}g/mL$ and the growth rate was reduced in a dose dependent manner up to $1,000{\mu}g/mL$. These results indicated that GPE had high antiproliferation effects on breast and liver cancer cell lines at low concentrations ($200{\mu}g/mL$), and by higher concentrations over $500{\mu}g/mL$, GPE inhibited the growth of A549 and HT-29. The results of our study suggested the potential use of garlic peels for use as an excellent antiproliferative substance for human cancer cells.

TNF-${\alpha}$ Regulates Potassium Cyanate-induced Apoptosis via NF-${\kappa}B$ Activation in HCT 116 Cells

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • Potassium cyanate (KOCN) that is known as an inducer of the protein carbamylation is an inorganic compound and is the conjugate based of cyanic acid (HOCN). Based on these studies, we confirmed that KOCN induces the apoptosis of the human colorectal cancer cell line, HCT 116 cells, by various mitochondrial pathways. To investigate other mechanisms of KOCN-mediated apoptosis, in the present study, we examined KOCN-induced cytokines production in HCT 116 cells and identified the intracellular signaling pathway in these processes. We first demonstrated that KOCN considerably increased the cell apoptosis via intracellular $Ca^{2+}$ signaling, mitochondrial dysfunction and ROS production. And then we examined TNF-${\alpha}$ and IL-$1{\beta}$ levels mediated by KOCN in HCT 116 cells. Although IL-$1{\beta}$ was not involved in KOCN-mediated HCT 116 cell apoptosis, the release of TNF-${\alpha}$ was mediated by KOCN in HCT 116 cells via NF-${\kappa}B$ activation. Apoptosis was also enhanced by incubation with supernatants from HCT 116 cells after KOCN treatment and this effect was partially reduced by BAY 11-7085 pre-treated supernatant. Taken together, our results indicate that KOCN-induced apoptosis in HCT 116 cells is dependent on the releases of TNF-${\alpha}$ and the increased factors and that the mechanism involves the activation of NF-${\kappa}B$.

Characterization of a Monoclonal Antibody Specific to Human Siah-1 Interacting Protein (인체 SIP 단백질에 특이적인 단일클론 항체의 특성)

  • Yoon, Sun Young;Joo, Jong Hyuck;Kim, Joo Heon;Kang, Ho Bum;Kim, Jin Sook;Lee, Younghee;Kwon, Do Hwan;Kim, Chang Nam;Choe, In Seong;Kim, Jae Wha
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Background: A human orthologue of mouse S100A6-binding protein (CacyBP), Siah-1-interacting protein (SIP) had been shown to be a component of novel ubiquitinylation pathway regulating $\beta$-catenin degradation. The role of the protein seems to be important in cell proliferation and cancer evolution but the expression pattern of SIP in actively dividing cancer tissues has not been known. For the elucidation of the role of SIP protein in carcinogenesis, it is essential to produce monoclonal antibodies specific to the protein. Methods: cDNA sequence coding for ORF region of human SIP gene was amplified and cloned into an expression vector to produce His-tag fusion protein. Recombinant SIP protein and monoclonal antibody to the protein were produced. The N-terminal specificity of anti-SIP monoclonal antibody was conformed by immunoblot analysis and enzyme linked immunosorbent assay (ELISA). To study the relation between SIP and colon carcinogenesis, the presence of SIP protein in colon carcinoma tissues was visualized by immunostaining using the monoclonal antibody produced in this study. Results: His-tag-SIP (NSIP) recombinant protein was produced and purified. A monoclonal antibody (Korea patent pending; #2003-45296) to the protein was produced and employed to analyze the expression pattern of SIP in colon carcinoma tissues. Conclusion: The data suggested that anti-SIP monoclonal antibody produced here was valuable for the diagnosis of colon carcinoma and elucidation of the mechanism of colon carcinogenesis.

The Neutrophil to Lymphocyte Ratio has a High Negative Predictive Value for Pathologic Complete Response in Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy

  • Eryilmaz, Melek Karakurt;Mutlu, Hasan;Salim, Derya Kivrak;Musri, Fatma Yalcin;Tural, Deniz;Coskun, Hasan Senol
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7737-7740
    • /
    • 2014
  • Background: The neutrophil-to-lymphocyte ratio (NLR) is a strong predictor of mortality in patients with pancreatic, colorectal, lung, gastric cancer and renal cell carcinoma. The aim of this study was to determine the relationship between pathological complete response (pCR) and pretreatment NLR values in locally advanced breast cancer (BC) patients receiving neoadjuvant chemotherapy (NACT). Materials and Methods: Datawere collected retrospectively from the Akdeniz University School of Medicine Database for locally advanced BC patients treated with NACT between January 2000-December 2013. Results: A total of 78 patients were analyzed. Sixteen (20%) patients achieved pCR. Estrogen receptor (ER) positivity was lower in pCR+ than pCR-cases (p=0.011). The median NLR values were similar in both arms. The optimum NLR cut-off point for BC patients with PCR+ was 2.33 (AUC:0.544, 95%CI [0.401-0.688], p=0.586) with sensitivity, specificity, positive predictive value and negative predictive value (NPV) of 50%, 51,6%, 21,1%, and 80%, respectively. Conclusions: This study showed no relationship between the pCR and pretreatment NLR values. Because of a considerable high NPV, in the patients with higher NLR who had luminal type BC in which pCR is lower after NACT, such treatment may not be recommended.

Methanol extracts of Humulus japonicus induced apoptosis in human FaDu hypopharynx squamous carcinoma cells

  • Jang, Ji Yeon;Park, Bo-Ram;Lee, Seul Ah;Choi, Mi Suk;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.47 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • Humulus japonicus (HJ) is a widely used herbal medicine for pulmonary tuberculosis, hypertension, leprosy, and venomous wounds in Asia, particularly in China. Although HJ has certain physiological activities, such as longitudinal bone growth, antioxidation and alleviation of rheumatism, its anticancer activities, other than in colorectal and ovarian cancer, are yet to be studied. In this study, we investigated the anti-cancer activity and mechanism of methanol extracts of HJ (MeHJ) against human FaDu hypopharyngeal squamous carcinoma cells. MeHJ suppressed FaDu cell viability without affecting normal cells (L929), which was demonstrated using the MTT and Live & Dead assays. Furthermore, MeHJ effectively inhibited colony formation of FaDu cells, even at non-cytotoxic concentrations, and significantly induced apoptosis through the proteolytic cleavage of caspase-9, -3, -7, poly (ADP-ribose) polymerase and through the downregulation of BCL-2 and upregulation of BAX in FaDu cells, as determined by DAPI staining, flow cytometry, and western blot analyses. Collectively, these findings suggest that the inhibitory effects of MeHJ on the growth and colony formation of oral cancer cells may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeHJ has the potential to be used as a natural chemotherapeutic drug against human oral cancer.