• Title/Summary/Keyword: Color-based tracking

Search Result 255, Processing Time 0.029 seconds

Color Object Recognition and Real-Time Tracking using Neural Networks

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.135-135
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks that have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, we have a global search for entire image and then have tracking the object through local search when the object is recognized.

  • PDF

시각을 이용한 이동 로봇의 강건한 경로선 추종 주행 (Vision-Based Mobile Robot Navigation by Robust Path Line Tracking)

  • 손민혁;도용태
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.178-186
    • /
    • 2011
  • Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

Face Tracking Using Skin-Color and Robust Hausdorff Distance in Video Sequences

  • Park, Jungho;Park, Changwoo;Park, Minyong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.540-543
    • /
    • 1999
  • We propose a face tracking algorithm using skin-color based segmentation and a robust Hausdorff distance. First, we present L*a*b* color model and face segmentation algorithm. A face is segmented from the first frame of input video sequences using skin-color map. Then, we obtain an initial face model with Laplacian operator. For tracking, a robust Hausdorff distance is computed and the best possible displacement t. is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.

  • PDF

배경 컬러와 시간에 대한 필터링을 접목한 컬러 중심 이동 기반 물체 추적 알고리즘 (Object Tracking Based on Color Centroids Shifting with Background Color and Temporal filtering)

  • 이석호;최은철;강문기
    • 방송공학회논문지
    • /
    • 제16권1호
    • /
    • pp.178-181
    • /
    • 2011
  • 최근, 모바일 기기의 발전, 팬/틸트 카메라를 사용한 지능형 감시 시스템 등이 발전하면서 비정적 환경에서의 추적알고리즘에 대한 연구가 활발하게 이루어지고 있다. 비정적 환경에서는 배경에 대한 모델링이 어렵기 때문에 주로 컬러, 텍스쳐 등의 피쳐를 이용한 객체 추적이 이루어진다. 이 경우 배경에 나타나는 객체의 컬러와 유사한 컬러들로 인해 추적이 불안정해진다. 본 논문에서는 컬러에 기반한 객체추적 방법들 중에 상대적으로 안정적이고 속도가 빠른 중심 이동 (Centroid Shifting) 기반의 추적 알고리즘을 더욱 안정화하기 위해 배경에 대한 영향을 줄이고, 시간 필터링을 접목하는 방법에 대하여 제안하고자 한다.

분산다중센서로 구현된 지능화공간의 색상정보를 이용한 실시간 물체추적 (Real-Time Objects Tracking using Color Configuration in Intelligent Space with Distributed Multi-Vision)

  • 진태석;이장명;하시모토히데키
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.843-849
    • /
    • 2006
  • Intelligent Space defines an environment where many intelligent devices, such as computers and sensors, are distributed. As a result of the cooperation between smart devices, intelligence emerges from the environment. In such scheme, a crucial task is to obtain the global location of every device in order to of for the useful services. Some tracking systems often prepare the models of the objects in advance. It is difficult to adopt this model-based solution as the tracking system when many kinds of objects exist. In this paper the location is achieved with no prior model, using color properties as information source. Feature vectors of multiple objects using color histogram and tracking method are described. The proposed method is applied to the intelligent environment and its performance is verified by the experiments.

Depth 정보를 이용한 CamShift 추적 알고리즘의 성능 개선 (Performance Improvement of Camshift Tracking Algorithm Using Depth Information)

  • 주성욱;최한고
    • 융합신호처리학회논문지
    • /
    • 제18권2호
    • /
    • pp.68-75
    • /
    • 2017
  • 본 연구에서는 이동 물체의 색상이 배경 내 색상과 동일하거나 유사한 색상이 존재하는 경우 컬러기반에서 효과적으로 이동 물체의 추적 방법을 다루고 있다. 대표적인 컬러 기반 추적방법인 CamShift 알고리즘은 배경 영상에 이동물체의 색상이 존재하는 경우 불안정한 추적을 보여주고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 물체의 Depth 정보를 병합한 CamShift 알고리즘을 제안하고 있다. Depth 정보 영상의 모든 픽셀의 거리정보를 측정하는 Kinect 장치로부터 구할 수 있다. 실험결과 이동물체의 거리정보를 병합시킨 제안된 추적 방법은 기존 CamShift 알고리즘의 불안정한 추적기능을 보완하였고, CamShift 알고리즘만 사용한 경우와 비교해 볼 때 추적성능을 향상시켰다.

  • PDF

컬러 클러스터링 기법을 이용한 공간지능화의 다중이동물체 추척 기법 (A Study on Multi-Object Tracking Method using Color Clustering in ISpace)

  • 진태석;김현덕
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2179-2184
    • /
    • 2007
  • 본 논문에서는 인간과 환경사이의 물리적 또는 심리적 인터액션을 통한 인간중심의 적절한 서비스를 제공하는 공간지능화(iSpace: Intelligent Space) 구현하고자 네트웍 센서 인식공간을 소개하고 있다. 영상 데이터 처리 및 정보 네트웍 기능을 갖는 다수의 컬러 CCD 카메라를 iSpace 공간에 분산 배치하였다. iSpace내의 정보획득을 위한 네트웍 센서를 분산 지능형 네트웍 디바이스(DIND: Distributed Intelligent Network Devices)라고 명명하고 있으며, 각 DIND는 일종의 클라이언트 역할을 수행하도록 하였으며, DIND는 카메라 센서를 이용하는 이른바 카메라 네트워크를 구성한 것으로 이를 통해 실내 환경을 인식하고 모델링 하며 공간 내 거주자의 의도를 인식하기 위한 시스템을 구축하였다.

카메라 이동환경에서 mean shift와 깊이 지도를 결합한 다수 인체 추적 (Multiple Human Tracking using Mean Shift and Depth Map with a Moving Stereo Camera)

  • 김광수;홍수연;곽수영;안정호;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.937-944
    • /
    • 2007
  • 본 논문은 스테레오 카메라를 이용한 이동 카메라 환경에서Mean Shift와 깊이지도를 결합하여 다수의 사람을 다양한 자세, 크기, 조명변화에 강인한 추적을 하는 방법을 제안한다. Mean Shift 추적 알고리즘은 빠르고 안정적인 성능으로 실시간 추적에 적합하다. 그러나 객체의 칼라 정보만으로는 배경과 칼라 분포가 유사한 객체의 경우 추적에 실패할 수 있는 단점을 보완하기 위하여 깊이 정보를 결합하는 방법을 제안한다. 또한 객체가 이동하면서 발생하는 가려짐 문제를 해결하기 위하여 검출된 사람 영역을 머리, 몸통, 다리로 나누어 신체 부위별 모델링을 하였고 박스 크기가 객체의 크기변화에 따라 적응적으로 변하도록 하였다. 본 논문에서 제안하는 알고리즘은 다양한 데이타에 대해서 실험한 결과 정확한 검출과 추적에 우수한 성능을 확인 할 수 있었다.

칼라와 공간 정보를 이용한 평균 이동에 기반한 물체 추적 (Mean Shift Based Object Tracking with Color and Spatial Information)

  • 안광호;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1973-1974
    • /
    • 2006
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local maxima of a similarity measure between the color histograms of the target and candidate image. However, the mean shift tracking algorithm using only color histograms has a serious defect. It doesn't use the spatial information of the target. Thus, it is difficult to model the target more exactly. And it is likely to lose the target during the occlusions of other objects which have similar color distributions. To deal with these difficulties we use both color information and spatial information of the target. Our proposed algorithm is robust to occlusions and scale changes in front of dynamic, unstructured background. In addition, our proposed method is computationally efficient. Therefore, it can be executed in real-time.

  • PDF

수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종 (Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots)

  • 김동훈;이동화;명현;최현택
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.142-149
    • /
    • 2012
  • The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.