• Title/Summary/Keyword: Color-based tracking

Search Result 255, Processing Time 0.029 seconds

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

Automatic Detection of Dissimilar Regions through Multiple Feature Analysis (다중의 특징 분석을 통한 비 유사 영역의 자동적인 검출)

  • Jang, Seok-Woo;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.160-166
    • /
    • 2020
  • As mobile-based hardware technology develops, many kinds of applications are also being developed. In addition, there is an increasing demand to automatically check that the interface of these applications works correctly. In this paper, we describe a method for accurately detecting faulty images from applications by comparing major characteristics from input color images. For this purpose, our method first extracts major characteristics of the input image, then calculates the differences in the extracted major features, and decides if the test image is a normal image or a faulty image dissimilar to the reference image. Experiment results show that the suggested approach robustly determines similar and dissimilar images by comparing major characteristics from input color images. The suggested method is expected to be useful in many real application areas related to computer vision, like video indexing, object detection and tracking, image surveillance, and so on.

A Study on Hand Gesture Recognition with Low-Resolution Hand Images (저해상도 손 제스처 영상 인식에 대한 연구)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Recently, many human-friendly communication methods have been studied for human-machine interface(HMI) without using any physical devices. One of them is the vision-based gesture recognition that this paper deals with. In this paper, we define some gestures for interaction with objects in a predefined virtual world, and propose an efficient method to recognize them. For preprocessing, we detect and track the both hands, and extract their silhouettes from the low-resolution hand images captured by a webcam. We modeled skin color by two Gaussian distributions in RGB color space and use blob-matching method to detect and track the hands. Applying the foodfill algorithm we extracted hand silhouettes and recognize the hand shapes of Thumb-Up, Palm and Cross by detecting and analyzing their modes. Then, with analyzing the context of hand movement, we recognized five predefined one-hand or both-hand gestures. Assuming that one main user shows up for accurate hand detection, the proposed gesture recognition method has been proved its efficiency and accuracy in many real-time demos.

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF

Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector (컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류)

  • Yu, Je-Hun;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

A Design and Implementation Mobile Game Based on Kinect Sensor

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.73-80
    • /
    • 2017
  • In this paper, we design and implement a mobile game based on Kinect sensor. This game is a motion recognition maze game based on Kinect sensor using XNA Game Studio. The game consists of three stages. Each maze has different size and clear time limit. A player can move to the next stage only if the player finds the exit within a limited time. However, if the exit is not found within the time limit, the game ends. In addition, two kinds of mini games are included in the game. The first game is a fruit catch game using motion recognition tracking of the Kinect sensor, and player have to pick up a certain number of randomly falling fruits. If a player acquire a certain number of fruits at this time, the movement speed of the player is increased. However, if a player takes a skeleton that appears randomly, the movement speed will decrease. The second game is a Quiz game using the speech recognition function of the Kinect sensor, and a question from random genres of common sense, nonsense, ancient creature, capital, constellation, etc. are issued. If a player correctly answers more than 7 of 10 questions, the player gets useful items to use in finding the maze. This item is a navigator fairy that helps the player to escape the forest.

Vision-Based Two-Arm Gesture Recognition by Using Longest Common Subsequence (최대 공통 부열을 이용한 비전 기반의 양팔 제스처 인식)

  • Choi, Cheol-Min;Ahn, Jung-Ho;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.371-377
    • /
    • 2008
  • In this paper, we present a framework for vision-based two-arm gesture recognition. To capture the motion information of the hands, we perform color-based tracking algorithm using adaptive kernel for each frame. And a feature selection algorithm is performed to classify the motion information into four different phrases. By using gesture phrase information, we build a gesture model which consists of a probability of the symbols and a symbol sequence which is learned from the longest common subsequence. Finally, we present a similarity measurement for two-arm gesture recognition by using the proposed gesture models. In the experimental results, we show the efficiency of the proposed feature selection method, and the simplicity and the robustness of the recognition algorithm.

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

Eye Tracking Using Neural Network and Mean-shift (신경망과 Mean-shift를 이용한 눈 추적)

  • Kang, Sin-Kuk;Kim, Kyung-Tai;Shin, Yun-Hee;Kim, Na-Yeon;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.