In this paper, we present an color quantization method by complementing the disadvantage of K-means color quantization that is one of the well-known color quantization. We named the proposed method "octree-means" color quantization. K-means color quantization does not use all of the clusters because it initializes the centroid of clusters with random value. The proposed method complements this disadvantage by using the octree color quantization which is fast and uses the distribution of colors in image. We compare the proposed method to six well-known color quantization methods on ten test images to evaluate the performance. The experimental results show 68.29 percent of mean square error(MSE) and processing time increased by 14.34 percent compared with K-means color quantization. Therefore, the proposed method improved the K-means color quantization and perform an effective color quantization.
이미지에 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 정보로서 이러한 정보를 실시간에 찾아내서 인식한다면 다양한 응용에 활용할 수 있다. 본 논문에서는 카메라로 취득한 다양한 종류의 이미지로부터 텍스트를 추출하는 방법과 추출된 영역에서 텍스트를 분리하는 방법을 새롭게 제안한다. 텍스트 영역 추출을 위해서 RGB 색 공간에서 색 분산을 특징으로 제안하며, 텍스트 영역 분리를 위해서 RGB 색 공간에서 개선된 K-means 병합을 제안한다. 실험은 디지털 카메라와 핸드폰 카메라로 취득한 다양한 종류의 문서유형 이미지와 실내외의 일반적인 자연이미지를 사용하였으며, ICDAR 콘테스트[1] 이미지의 일부도 사용하였다.
본 논문에서는 색상 군집화를 이용한 입술탐지 알고리즘을 제안한다. RGB 색상 모델로 주어진 입력영상에서 AdaBoost 알고리즘을 이용하여 얼굴영역을 추출한 후, 얼굴영역을 Lab 컬러 모델로 변환한다. Lab 컬러 모델에서 a 성분은 입술과 유사한 색상을 잘 표현할 수 있는 반면 b 성분은 입술의 보색을 표현할 수 있기 때문에 Lab 컬러로 표현된 얼굴영역에서 a와 b 성분을 기준으로 최단 이웃(nearest neighbour) 군집화 알고리즘을 이용하여 피부 영역을 분리한 후, K-means 색상 군집화를 통해 입술 후보 영역을 추출하고, 마지막으로 기하학적 특징을 이용하여 최종적인 입술영역을 탐지하였다. 실험 결과는 제안된 방법이 강건하게 입술을 탐지함을 보인다.
본 논문은 컬러 히스토그램과 ‘컬러 텍스쳐’을 이용하는 새로운 내용기반 영상 검색 기법을 제안한다. 제안한는 방법은 영상의 컬러 히스토그램을 k-means 군집화하여 얻은 컬러 벡터로 히스토그램을 대표하고, 각 대표 컬러 벡터를 중심으로 화소 색상과의 거리를 이용해 컬러 텍스처를 만든다. 그러므로, 컬러 텍스처란 영상의 컬러 히스토그램에 의해 두드러지는 텍스처 성분을 의미하며 본 논문에서는 컬러 텍스처를 Gaussian Markov Random Field (GMRF) 모델로 해석한다. 제안하는 알고리듬은 영역화와 같은 기하학적 정보를 추출하는 과정이 없으므로 고속의 검색에 적합하며, 기존의 컬러 히스토그램만을 이용한 기법이나 영상의 밝기 성분에서 나타나는 텍스처를 이용한 방법에 비해 효과적인 검색 결과를 나타낸다.
This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.
Journal of information and communication convergence engineering
/
제16권4호
/
pp.258-263
/
2018
Color Doppler sonography is a useful tool for examining blood flow and related indices. However, it should be done by well-trained operator, that is, operator subjectivity exists. In this paper, we propose an automatic blood flow area extraction method from brachial artery that would be an essential building block of computer aided color Doppler analyzer. Specifically, our concern is to examine hypertension suspicious (prehypertension) patients who might develop their symptoms to established hypertension in the future. The proposed method uses fuzzy C-means clustering as quantization engine with careful seeding of the number of clusters from histogram analysis. The experiment verifies that the proposed method is feasible in that the successful extraction rates are 96% (successful in 48 out of 50 test cases) and demonstrated better performance than K-means based method in specificity and sensitivity analysis but the proposed method should be further refined as the retrospective analysis pointed out.
본 논문에서는 색조 도플러 초음파 영상에서 K-Means 알고리즘을 적용하여 혈류 영역을 추출하는 방법을 제안한다. 제안된 방법에서는 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥의 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥의 혈류영역을 정확히 추출하기 위하여 K-Means 기반 양자화 기법을 적용한다. 실험에서 제안 된 방법은 현장 전문가의 검증을 거쳐 30건 중 28건 (93.3%)에서 혈류 영역을 성공적으로 추출하였다. 그리고 제안된 K-Means 기반 혈류 영역 추출 방법을 30개의 색조 도플러 초음파 영상에 적용하여 전문의가 제공한 상완동맥 혈류 영역과 제안된 방법을 비교 분석한 결과, 정확도가 평균적으로 94.27%로 나타났다.
Discoloration sensitivities of woods grown in this country haven't reported yet. Therefore we examined discoloration sensitivities of domestic wood specimens to iron (0.1 %, $FeCl_3.6H_2O$), alkali (pH 12.0, NaOH). acid (pH 1.0, $C_2H_2O_4$) and exposing to sunlight (40 hrs), Thirty-six hardwood species were collected and examined. All specimens were prepared from heartwoods of the collected species. But the specimens of 4 Betula species were divided into sapwoods and heartwoods. By iron stain, the color differences (${\Delta}E$) of 21 wood specimens including one Betula sapwood showed above 12.0, which means strong discoloration sensitivities, and of 3 specimens including one Betula sapwood showed below 2.5, which means weak discolorations. The most strong iron discoloration species was Jungkukgulpi-namu (Pterocarya stenoptera). By alkali stain, the color differences (${\Delta}E$) of 3 wood specimens showed above 9.0, which means strong discoloration sensitivities, and of 18 wood specimens including 4 Berula sapwoods showed below 2.5, which means weak discolorations. By acid stain, the color differences (${\Delta}E$) of 6 wood specimens showed above 10.0 which means strong discoloration sensitivities, and of 12 wood specimens including one Betula sapwoods showed below 2.5, which means weak discolorations. By exposing to sunlight, the color differences (${\Delta}E$) of 31 wood specimens including one Betula sapwoods showed below 6.5, which means, strong discoloration sensitivities, and of only one specimens showed below 2.5, which means weak discoloration. The most strong discoloration species by exposing to sunlight was Guirung-namu (Prunus padus). In general, it was shown that hardwoods grown in Korea were most subject to change of color by exposing to sunlight and next were by iron stain. Domestic hardwoods showed some differences in discoloration sensitivities from domestic softwoods previously reported.
Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.
칼라 영상 분할의 한 방법으로 fuzzy C-means를 이용한 방법이 많이 연구되었으나, 이 방법은 클러스터의 개수가 정해져야 사용할 수 있는 방법이다. 분할해야 할 데이터가 많은 경우 예비 분할을 수행하여 예비 분할 되지 않는 데이터들에 대해서 상세 분할을 fuzzy C-means를 사용하여 분할 하나 예비 분할된 데이터의 클러스터 중심과 상세 분할로 만들어진 클러스터의 중심과는 연계성이 없어진다. 본 연구에서는 이것을 보완하기 위하여 차감 클러스터링을 사용하여 칼라 영상의 클러스터의 개수와 중심을 구한 후, 이것을 이용하여 영상을 예비 분할하고 중력을 가진 fuzzy C-means를 사용하여 분할되지 않은 나머지 부분과 클러스터의 중심을 최적화 시켜 분할하는 알고리듬을 제안한다. 제안된 방법의 정성적인 평가를 수행하여 본 논문에서 제시된 방법이 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.