• 제목/요약/키워드: Colonic fermentation

검색결과 16건 처리시간 0.026초

Effect of Chlorella vulgaris on gut microbiota through a simulated in vitro digestion process

  • Jin, Jong Beom;Cha, Jin Wook;Shin, Il-Shik;Jeon, Jin Young;An, Hye Suck;Cha, Kwang Hyun;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제64권1호
    • /
    • pp.49-55
    • /
    • 2021
  • The diet plays a fundamental role in the formation of the gut microbiota, determining the interrelationship between the gut microbiota and the host. The current study investigated the effect of Chlorella vulgaris on the gut microbiota by using simulated in vitro digestion and colonic fermentation. Bioaccessibility was measured after in vitro digestion, and SCFAs and microbial profiling were analyzed after colonic fermentation. The bioaccessibility of C. vulgaris was 0.24 g/g. The three major SCFAs (acetate, propionate, and butyrate) increased significantly when compared to the control group. In microbial profiling analysis, microorganisms such as Faecalibacterium, Dialister, Megasphaera, Dorea, Odoribacter, Roseburia, Bifidobacterium, Butyricmonas, and Veillonella were high in C. vulgaris group. Among them, Faecalibacterium, Dialister, Megasphaera, Roseburia, and Veillonella were thought to be closely associated with the increased level of SCFAs. Finally, it can be expected to help improve gut microbiota and health through ingestion of C. vulgaris. However, further studies are vital to confirm the changes in the gut microbiota in in vivo, when C. vulgaris is ingested.

Effect of Yam Yogurt on Colon Mucosal Tissue of Rats with Loperamide-induced Constipation

  • Jeon, Jeong-Ryae;Kim, Joo-Young;Choi, Joon-Hyuk
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.605-609
    • /
    • 2007
  • The effects of lactic acid fermented yam yogurt (Yam/YG) on colon mucosal tissue were investigated in a loperamide-induced constipation rat models. Sprague-Dawley rats were fed for 6 weeks with 3 types of diets (normal, supplemented with lactic acid bacteria, and supplemented with Yam/YG), and were then administered loperamide intraperitoneally twice daily for 5 days. Administration of loperamide decreased fecal excretion and the moisture content of feces with increasing of numbers of pellets in the colon. On the histopathologic findings from hematoxylin and eosin (H& E) and alcian blue stainings, supplementation with Yam/YG resulted in the recovery of depleted goblet cells and mucin, and increased the numbers of Ki-67 positive cells, indicating restoration of colonic mucosa through cell proliferation and crypt regeneration against damages observed in crypt epithelial cells of loperamide-induced rats. These results indicate that Yam/YG improves evacuation and mucus production in the gastrointestinal tracts of constipated-induced rats.

Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis

  • Hyeon-Ji Lim;In-Sun Park;Ji Won Seo;Gwangsu Ha;Hee-Jong Yang;Do-Youn Jeong;Seon-Young Kim;Chan-Hun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1501-1510
    • /
    • 2024
  • Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.

Effects of a soluble dietary fibre NUTRIOSE$^{(R)}$ on colonic fermentation and excretion rates in rats

  • Guerin-Deremaux, Laetitia;Ringard, Florence;Desailly, Fabrice;Wils, Daniel
    • Nutrition Research and Practice
    • /
    • 제4권6호
    • /
    • pp.470-476
    • /
    • 2010
  • The resistant dextrin NUTRIOSE$^{(R)}$, developed from starch, is expected to act as a prebiotic. The aim of this study was to determine the effects of NUTRIOSE$^{(R)}$ on cecal parameters, short-chain fatty acid (SCFA) concentrations, and fecal excretion in rats. In an initial experiment, twenty-four male Fischer F344 rats were randomly assigned to one of the following four treatments for 14 days: G0 (control diet), G2.5 (control diet+2.5% of dextrin), G5 (control diet + 5% of dextrin), and G10 (control diet + 10% of dextrin). After 14 days, total cecal weight, cecal content, and cecal wall weight were significantly increased in G5 and G10 compared to G0. At the same time, cecal pH was significantly lower in G10 compared to G0. Total SCFA concentration was significantly higher in G10 than in G5, G2.5, and G0, and significantly higher in G5 than in G0. Acetate, butyrate, and propionate concentrations were significantly increased in G5 and G10 compared to the controls. In a second trial based on a similar design, eighteen male Fischer F344 rats were treated with a control diet supplemented with 5% of dextrin or 5% of fructo-oligosaccharide. The results obtained with NUTRIOSE$^{(R)}$ were similar to those obtained with the fructo-oligosaccharide. In a third experiment, two groups of 5 Fischer F344 rats were orally treated with 100 and 1,000 mg/kg NUTRIOSE$^{(R)}$, respectively, and from 18% to 25% of the dextrin was excreted in the feces. The results of these three studies show that the consumption of NUTRIOSE$^{(R)}$, by its effects on total cecal weight, cecal content, cecal wall weight, pH, and SCFA production, could induce healthy benefits since these effects are reported to be prebiotic effects.

식이 베타-글루칸이 흰쥐의 장내 단쇄지방산 조성 및 장내환경 개선에 미치는 영향 (Effects of Dietary β-Glucan on Short Chain Fatty Acids Composition and Intestinal Environment in Rats)

  • 홍경희;장기효;강순아
    • 한국식품영양학회지
    • /
    • 제29권2호
    • /
    • pp.162-170
    • /
    • 2016
  • The effects of dietary ${\beta}$-glucan, obtained from bacterial fermentation, on the intestinal mass, short chain fatty acids, lactate production and pH in Sprague-Dawley (SD) rats were evaluated. SD rats fed with 0% (control group), 1% or 5% ${\beta}$-glucan supplemented diets (w/w) for 3 weeks. The presence of ${\beta}$-glucan in the diets resulted in a significant increase in colonic contents in a dose dependent manner. The amount of short chain fatty acids increased in rats fed ${\beta}$-glucan diets. Rats fed the 5% ${\beta}$-glucan diets had higher levels of acetate, propionate and butyrate by 1.8, 1.7 and 3.0 fold of the control group in the cecum, and 2.2, 2.9 and 3.1 fold of the control group in the colon, respectively. The ${\beta}$-glucan diets also significantly increased the levels of cecal and colonic lactate by 1.4~3.4 fold, when compared to the control diet, indicating that dietary ${\beta}$-glucan stimulated the growth of lactic acid bacteria within the intestine. These results suggest that dietary ${\beta}$-glucan, by providing short chain fatty acids and reducing the cecal and colonic pH, may be beneficial in improving gut health, and provide evidence for the use of ${\beta}$-glucan as a dietary supplement for human consumption.

TNBS에 의해 유도된 마우스 대장염모델에서 유산균 발효 마의 항염효과 (Lactic Acid Fermentation of Dioscorea batatas and Its Anti-Inflammatory Effects on TNBS-induced Colits Model)

  • 현미선;허정무
    • Journal of Applied Biological Chemistry
    • /
    • 제54권1호
    • /
    • pp.51-55
    • /
    • 2011
  • 마(Dioscorea batatas)의 건강보조제로의 개발을 위해, 3가지 유산균, Lactobacillus acidophilus, Lactobacillus plantarum 그리고 Bifidobacterium longum 균주를 이용하여 발효를 하였다. 발효물은 10% 발효물 수용액으로 pH 측정결과 3.83, 총 유산균수는 $8{\times}10^6$ CFU/mL로 표준화 하였다. TNBS-로 유도된 대장염 마우스 모델에 일반 마(400 mg/kg)와 발효된 마(200, 400mg/kg)를 섭취한 결과, 조직학 및 형태학적 손상정도 그리고 MPO 활성 등이 비발효 마처리군에 비하여 발효된 마를 처리한 군에서 현저하게 감소되는 것을 확인하였다. 농도별로는 발효된 마가 200 mg/kg으로 처리된 군보다 400 mg/kg으로 처리된 마에서 설변이나 조직의 붕괴 현상을 현저하게 억제시키는 것을 알 수 있었다. 유산균 발효 마를 투여한 대장염 마우스에서는 체중감소 및 염증세포의 침윤을 효과적으로 억제하였다. 이러한 결과를 통하여, 유산균 발효물이 대장염 모델에서 매우 효과적으로 항염효과를 보였으며, 대장염 치료 및 예방에 매우 유용한 자료로 활용될 것으로 사료된다.

Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation

  • Park, Da Min;Bae, Jae-Han;Kim, Min Soo;Kim, Hyeontae;Kang, Shin Dal;Shim, Sangmin;Lee, Deukbuhm;Seo, Jin-Ho;Kang, Hee;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1729-1738
    • /
    • 2019
  • In sourdough fermentation, lactic acid bacteria perform important roles in the production of volatile and antimicrobial compounds, and exerting health-promoting effects. In this study, we report the probiotic properties and baking characteristics of Lactobacillus plantarum SPC-SNU 72-2 isolated from kimchi. This strain is safe to use in food fermentation as it does not carry genes for biogenic amine production (i.e., hdc, tdc, and ldc) and shows no β-hemolytic activity against red blood cells. The strain is also stable under simulated human gastrointestinal conditions, showing tolerance to gastric acid and bile salt, and adheres well to colonic epithelial cells. Additionally, this strain prevents pathogen growth and activates mouse peritoneal macrophages by inducing cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. Furthermore, the strain possesses good baking properties, providing rich aroma during dough fermentation and contributing to the enhancement of bread texture. Taken together, L. plantarum SPC-SNU 72-2 has the properties of a good starter strain based on the observation that it improves bread flavor and texture while also providing probiotic effects comparable with commercial strains.

Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier

  • Seong, Myeong A;Woo, Jong Kyu;Kang, Ju-Hee;Jang, Yeong Su;Choi, Seungho;Jang, Young Saeng;Lee, Taek Hwan;Jung, Kyung Hoon;Kang, Dong Kyu;Hurh, Byung Seok;Kim, Dae Eung;Kim, Sun Yeou;Oh, Seung Hyun
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.419-425
    • /
    • 2015
  • Ginseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine. In this study, we investigated the molecular mechanisms underlying the anti-inflammatory activity of fermented wild ginseng (FWG). We found that FWG significantly alleviated the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis mouse model, and decreased expression level of pro-inflammatory cytokines in colonic tissue. Moreover, we observed that FWG suppressed the infiltration of macrophages in DSS-induced colitis. FWG also attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB into the nucleus. Our data indicate that FWG contains anti-inflammatory activity via NF-κB inactivation and could be useful for treating colitis. [BMB Reports 2015; 48(7): 419-425]

섬유소 분해균을 이용한 건조 청보리 발효사료가 돼지의 In vitro 발효 특성에 미치는 영향 (Effects of Dried Whole Crop Barley Treated with Cellulolytic Microorganisms on In Vitro Fermentation Characteristics in Swine)

  • 박도연;박중국;조성백;김창현
    • 한국초지조사료학회지
    • /
    • 제30권2호
    • /
    • pp.179-190
    • /
    • 2010
  • 본 연구는 높은 섬유소 분해력을 검증 받은 Aspergillus niger (KCCM 60357)와 Bacillus licheniformis (KCCM 40934)를 단독 및 혼합 배양한 미생물제제로 양돈용 청보리 발효사료를 제조하였을 때 사료 성상변화, in vitro 대장발효 및 전장소화율에 미치는 영향을 평가하였다. 실험 설계는 건조 청보리 (control), A. niger (control + A. niger), B. licheniformis (control + B. licheniformis) 및 Mixture (control + Aspergillus niger + Bacillus licheniformis)구로, 균주를 첨가시킨 발효사료에 따라 네 처리군으로 나누었다. 사료 성분변화는 발효사료의 일반 성분분석을 통해 확인하였으며, 그 결과 A. niger 및 B. licheniformis구에서 조단백질과 조지방 함량이 유의하게 증가하였다 (p<0.05). In vitro 대장발효성상의 변화는 배양 후 24시간에 건물 분해율이 A. niger와 Mixture구에서 각각 55 및 57.42%로 대조구 및 B. licheniformis구와 비교하여 유의하게 높았다 (p<0.05). 가스 발생량은 대조구에서 유의적으로 가장 높았으며, 메탄가스 농도는 모든 처리구가 대조구에 비해 증가되었다. pH는 대조구를 비롯한 모든 처리구가 6.8 로 확인되었으며, 암모니아 질소는 모든 발효사료에서 유의하게 증가되었다. Xylanase 활력은 A. niger구가 유의적으로 높았으며 모든 처리구의 활력이 증가하였다 (p<0.05). 총 VFA 농도는 배양 후 24시간에 B. licheniformis구에서 높은 농도 (12.61mM)를 보여주며 VFA 개선효과를 나타냈다 (p<0.05). In vitro 전장 소화율은 B. licheniformis구에서 49.61%로 대조구의 45.65% 보다 소화율이 유의적으로 증진되었다(p<0.05). 따라서 본 실험에 사용된 미생물을 이용하여 청보리 발효사료를 제조하였을 때 전장 소화율 및 대장발효 환경 개선에 충분한 효과가 있을 것으로 기대된다.

Influence of Supplemental Enzymes, Yeast Culture and Effective Micro-organism Culture on Gut Micro-flora and Nutrient Digestion at Different Parts of the Rabbit Digestive Tract

  • Samarasinghe, K.;Shanmuganathan, T.;Silva, K.F.S.T.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.830-835
    • /
    • 2004
  • An experiment of 10 weeks duration was carried out to study the influence of supplemental effective microorganism (EM) culture, yeast culture and enzymes on nutrient digestibility and gut microflora in rabbit gastrointestinal (GI) tract. Twenty four eight to nine weeks old, New Zealand White rabbits were allotted to four dietary treatments; a basal (control) feed, basal feed supplemented with either EM (1%), yeast culture or enzymes (400 ppm). Nutrient flow in digesta and their digestibility at ileum, caecum, colon and in the total tract as well as gut microflora distribution were studied. Feed dry matter was diluted from 92% to about 14% up to the ileum and about 95% of this water was reabsorbed by the colonic rectal segment followed by caecum (25%). EM and yeast improved protein digestibility at a lower rate than enzymes. Ileal, caecal, colonic and total tract digestibility of crude protein with enzymes were higher by 10.8, 9.4, 11.3 and 10.7%, respectively, as compared to the control. Yeast and enzymes increased crude fiber digestibility at ileum, caecum, colon and in the total tract by 8.5, 9.6, 9.0 and 8.3%, respectively, while EM improved them at a lower rate. Irrespective of treatments, total tract digestibility of crude protein (0.698-0.773) and fiber (0.169-0.183) were greater (p<0.05) than the ileal digestibility. Even though a post-caecal protein digestibility was observed, fiber digestion seemed to be completed in the caecum especially with yeast and enzymes. High precaecal digestibility of crude fiber (97%) and protein (95%) were observed even without additives probably due to caecotrophy. EM and yeast culture promoted the growth of lactic acid bacteria especially in the caecum but they did not influence gut yeast and mould. Present findings reveal that even though rabbits digest nutrients efficiently through hind gut fermentation, they can be further enhanced by EM, yeast and enzymes. Of the three additives tested, enzymes found to be the best.