• Title/Summary/Keyword: Colon cancer cells

Search Result 551, Processing Time 0.033 seconds

Adenovirus-mediated Expression of Both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Induces G1 Arrest in HT-29 Cells

  • Gong, Lei;Jiang, Chunying;Zhang, Bing;Hu, Haiyan;Wang, Wei;Liu, Xianxi
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.730-736
    • /
    • 2006
  • To evaluated the effect of recombinant adenovirus Ad-ODC-AdoMetDCas which can simultaneously express both antisense ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) on cell cycle distribution in colorectal cancer cell and investigated underlying regulatory responses, human colorectal cancer cells HT-29 were cultured in RPMI 1640 medium and infected with Ad-ODC-AdoMetDCas. Cell cycle progression was detected by flow cytometry analysis. The expression levels of cell cycle regulated proteins were measured by Western blot analysis. The mRNA level of cyclin D1 was measured by RT-PCR. And a luciferase reporter plasmid of cyclin D1 promoter was constructed to observe the effect of Ad-ODC-AdoMetDCas on cyclin D1 promoter activity. The results showed that recombinant adenovirus Ad-ODC-AdoMetDCas significantly induced $G_1$ arrest, decreased levels of cyclin D1 protein and mRNA and suppressed the promoter activity. Ad-ODC-AdoMetDCas also inhibited nuclear translocation of $\beta$-catenin. In conclusion, downregulation of ODC and AdoMetDC mediated by Ad-ODC-AdoMetDCas transfection induces $G_1$ arrest in HT-29 cells and the arrest was associated with suppression of cyclin D1 expression and inhibition of $\beta$-catenin nuclear translocation. As a new anticancer reagent, the recombinant adenovirus Ad-ODC-AdoMetDCas holds promising hope for the therapy of colorectal cancers.

Physico-chemical Properties and In Vivo Anti-cancer Effects of Potato Kimchi Prepared by adding Hot Water Extracts of Potato (생감자의 열탕 추출물을 첨가한 감자 김치의 이화학적 특성 및 In Vivo에서의 항암 효과)

  • Chang, Sang-Keun;Kim, Hee-Joo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In this study, potato kimchi was prepared by applying heat to raw potatoes, and then the physico-chemical properties and anti-cancer effects of the kimchi were analyzed. The texture results indicated the potato kimchi had very good hardness and springiness attributes. During th late storage period, total vitamin C content of the kimchi slowly increased. In addition, the potato kimchi had non-volatile organic acid changes that promoted early aging; however, after the complete aging period, it was comparatively similar to other types of kimchi. Using the methanol extracts of various kimchi samples, the potato kimchi(solid 100%) showed the highest anti-carcinogenic effects in terms of anti-tumor activity in tumor bearing Balb/c mice with sarcoma-180 cells. In addition, the effects of the methanol extracts on hepatic glutathione S-transferase content were $289.76\;{\mu}mol/mg$ protein/min, $250.97\;{\mu}mol/mg$ protein/min, $251.20\;{\mu}mol/mg$ protein/min, $219.53\;{\mu}mol/mg$ protein/min, $183.79\;{\mu}mol/mg$ protein/min, for control kimchi, mul kimchi, and two potato kimchis [(solid 100%) and(solid 60%+kimchi juice 40%)], respectively. The in vivo anti-cancer effects of the potato kimchi were investigated using AGS human gastric adenocarcionoma cells and HT-29 human colon adenocarcionoma cells. Overall, an MTT assay revealed that the methanol extract of the potato kimchi showed the highest anti-carcinogenic effects.

  • PDF

Picropodophyllotoxin Induces G1 Cell Cycle Arrest and Apoptosis in Human Colorectal Cancer Cells via ROS Generation and Activation of p38 MAPK Signaling Pathway

  • Lee, Seung-On;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Joo, Sang Hoon;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1615-1623
    • /
    • 2021
  • Picropodophyllotoxin (PPT), an epimer of podophyllotoxin, is derived from the roots of Podophyllum hexandrum and exerts various biological effects, including anti-proliferation activity. However, the effect of PPT on colorectal cancer cells and the associated cellular mechanisms have not been studied. In the present study, we explored the anticancer activity of PPT and its underlying mechanisms in HCT116 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to monitor cell viability. Flow cytometry was used to evaluate cell cycle distribution, the induction of apoptosis, the level of reactive oxygen species (ROS), assess the mitochondrial membrane potential (Δψm), and multi-caspase activity. Western blot assays were performed to detect the expression of cell cycle regulatory proteins, apoptosis-related proteins, and p38 MAPK (mitogen-activated protein kinase). We found that PPT induced apoptosis, cell cycle arrest at the G1 phase, and ROS in the HCT116 cell line. In addition, PPT enhanced the phosphorylation of p38 MAPK, which regulates apoptosis and PPT-induced apoptosis. The phosphorylation of p38 MAPK was inhibited by an antioxidant agent (N-acetyl-L-cysteine, NAC) and a p38 inhibitor (SB203580). PPT induced depolarization of the mitochondrial inner membrane and caspase-dependent apoptosis, which was attenuated by exposure to Z-VAD-FMK. Overall, these data indicate that PPT induced G1 arrest and apoptosis via ROS generation and activation of the p38 MAPK signaling pathway.

Conjugated Linoleic Acid Reduction of Vascular Endothelial Growth Factor Expression in Murine Mammary Tumor Cells through Alteration of Prostaglandin E2

  • Kim, Jung-Hyun;Hubbard, Neil E.;Lim, Debora;Erickson, Kent L.
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid that have been used to reduce the incidence, growth and metastasis of breast, colon, prostate and gastric cancer in animals. CLA could reduce tumor growth by altering angiogenesis; a process requiring associated angiogenic factors such as vascular endothelial growth factor (VEGF). In this study, we determined whether CLA could modulate the expression of VEGF in murine mammary tumor cells and adipocytes. The c9, t11-CLA isomer reduced VEGF transcripts and protein when mammary tumor cells were stimulated with PMA. That isomer also reduced VEGF expression in un stimulated mouse 3T3-L1 adipocytes. Since VEGF can be regulated by cyclooxygenase-2 (COX-2), we determined whether CLA could alter COX-2 enzyme expression and $PGE_2$ production. The c9, t11-CLA isomer reduced not only COX-2 enzyme expression but also $PGE_2$ production. Thus, c9, t11-CLA could modulate neovascularization by alteration of VEGF expression from mammary tumor cells and adipocytes by reducing COX-2 metabolites.

Effects of Tea Constituents on Intracellular Level of the Major Tea Catechin, (-)-Epigallocatechin-3-gallate

  • Hong, Jun-Gil;Yang, Chung-S.
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.167-170
    • /
    • 2007
  • (-)-Epigallocatechin-3-gallate (EGCG), a mai or tea catechin has been shown to have many interesting biological activities. In the present study, we studied the effects of green tea catechins, EGCG metabolites, and black tea theaflavins on accumulation of EGCG in HT-29 human colon cells. Intracellular levels of [$^3H$]-EGCG were not changed significantly in the presence of other tea catechins including (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin-3-gallate. EGCG methyl metabolites and EGCG 4"-glucuronide did not affect cellular levels of [$^3H$]-EGCG. Black tea theaflavins and theasinensin A (TsA), an EGCG oxidative dimer, however, significantly decreased cellular accumulation of EGCG in HT-29 cells by 31-56%. This decrease was more pronounced when cells were incubated in the presence of theaflavin-3',3"-digallate (TFdiG) or TsA. When EGCG was added separately from TFdiG or TsA, the accumulation of EGCG in HT-29 cells was also significantly decreased regardless of when TFdiG or TsA was added during the uptake study (p<0.01). The results suggest that theaflavins and TsA may interrupt EGCG absorption through the gastrointestinal epithelium.

Arctigenin Inhibits Etoposide Resistance in HT-29 Colon Cancer Cells during Microenvironmental Stress

  • Yoon, Sae-Bom;Park, Hae-Ryong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.571-576
    • /
    • 2019
  • Microenvironmental stress, which is naturally observed in solid tumors, has been implicated in anticancer drug resistance. This tumor-specific stress causes the degradation of topoisomerase $II{\alpha}$, rendering cells resistant to topoisomerase $II{\alpha}$-targeted anticancer agents. In addition, microenvironmental stress can induce the overexpression of 78kDa glucose regulated protein (GRP78), which can subsequently block the activation of apoptosis induced by treatment with anticancer agents. Therefore, inhibition of topoisomerase $II{\alpha}$ degradation and reduction in GRP78 expression may be effective strategies for inhibiting anticancer drug resistance. In this study, we investigated the active compound arctigenin, which inhibited microenvironmental stress-induced etoposide resistance in HT-29 cells. Arctigenin was also highly toxic to etoposide-resistant HT-29 cells, with an $IC_{50}$ value of $10{\mu}M$ for colony formation. We further showed that arctigenin inhibited the degradation of topoisomerase $II{\alpha}$ and reduced the expression of GRP78. Thus, these results suggest that arctigenin is a novel therapeutic agent that inhibits resistance to etoposide associated with microenvironmental stress conditions.

Structural and Quantitative Expression Analyses of HERV Gene Family in Human Tissues

  • Ahn, Kung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.99-103
    • /
    • 2009
  • Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Antimutagenicity and Anticancer Activity of Soybean Fractions Extracted by Solvents (대두 분획물의 항돌연변이 및 항암활성 효과)

  • Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1368-1373
    • /
    • 2007
  • Inhibitory effects of several solvent fractions from soybean on mutagenicity using Salmonella typhimurium TA 100 in Ames test and growth of human cancer cells (AGS gastric adenocarcinoma, Hep 3B hepatocellular cancinoma and HT-29 colon cancer cells) were studied. The treatment of dichloromethane and ethylacetate fractions (2.5 mg/assay) extracted from soybean to Ames test system inhibited aflatoxin $B_1\;(AFB_1)$ induced mutagenicity by 83%, respectively, and showed a higher antimutagenic effect than other solvent fractions. In case of N-methyl-N#-nitro-N-nitrosoguamidine (MNNG) induced mutagenicity, the ethylacetate fraction showed the highest inhibitory effect (by 67%) among solvent extracts, although the inhibitory effect was not stronger compared with $AFB_1$ induced mutagenicity. In sulforhodamine B (SRB) assay, the treatment of ethylacetate fraction (2 mg/assay) significantly inhibited the growth of AGS, Hep 3B and HT-29 cancer cells by 66%, 73% and 77%, respectively, followed with the intermediate and dichloromethane fractions. These results indicated that soybean fraction extracted with ethylacetate had higher inhibitory effects on $AFB_1$ and MNNG in Ames test and growth inhibition activity to human cancer cells was appeared, suggesting that soybean fraction extracted with ethylacetate may contain the biologically active compounds.

Biological activity of Euonymus alatus (Thunb.) Sieb. wing extracts (화살나무 날개 추출물의 생리활성)

  • Hye-Ji Min;Du-Hyun Kim;Kwon-Il Seo
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.358-368
    • /
    • 2023
  • Euonymus alatus (Thunb.) Sieb., also known as the arrow tree in Korea, is a plant in East Asia used in traditional medicine and food. In particular, the wings of E. alatus are rich in phenolic compounds. This study evaluated the antioxidant, α-glucosidase inhibition, and anti-cancer activities of E. alatus wing extracts. The radical and hydrogen peroxide scavenging acitvities and reducing the power of 1,000 ㎍/mL E. alatus wing extracts, were similar to those of the positive control (0.1% BHT, 0.1% α-tocopherol). In addition, ethanol and methanol extract at 250 ㎍/mL showed 95.70 and 94.99% of α-glucosidase inhibition activity, respectively. The ethanol extract of E. alatus wings had the highest total polyphenol and flavonoid contents (867.8 mg% and 521.7 mg%, respectively). The E. alatus wing extracts significantly decreased the cell viability of LNCaP human prostate cancer cells (p<0.001), MDA-MB-231 human breast cancer cells (p<0.001), and HT-29 human colon cancer cells (p<0.001) in a dose-dependent manner. However, there was no significant effect on B16 mouse melanoma cells. Notably, the ethanol extracts showed higher cancer cell growth inhibitory activity in LNCaP and HT-29 cells than the other extracts. These results suggest that E. alatus wing extracts could have significant clinical applications, and our results can be used as basic data for future functional food material development.