• Title/Summary/Keyword: Colloidal systems

Search Result 61, Processing Time 0.022 seconds

Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process (응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향)

  • Go, Gilhyun;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

The Application of a Laser to the Chemical Characterization of Radionuclides

  • Park, Y.J.;Park, K.K.;M/Y. Suh;S.K. Yoon;Park, Y.S.;Kim, D.Y.;Kim, W.H.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.446-456
    • /
    • 2000
  • Laser induced photoacoustic, fluorescence, and photon correlation spectroscopies were applied to the chemical characterization of radionuclides in connection with the radiowaste treatment and disposal. Their measuring principles and systems were briefly described together with their advantages over conventional spectroscopies. Also, other applications of lasers are introduced. Laser induced photoacoustic spectra were measured for a P $r^{3+}$ solution with a very low molar absorptivity. The detection sensitivity was 4.3 $\times$10$^{-5}$ c $m^{1}$ and was 100 times better than that of a UV/VIS spectrophotometer. The Eu(III) excitation spectra($^{7}$ $F_{0}$ longrightarrow $^{5}$ $D_{0}$ transition) were measured for Eu(III)-phthalate complexes using laser fluorescence spectroscopy, showing that only two species, 1:1 and 1:2 complexes, are present in the Eu(III)-phthalic acid system. The size and size distribution for colloidal humic acids and Eu(III)-humate colloids was determined using photon correlation spectroscopy. The presence of Eu(III) enhanced the aggregation of humic acids.s.

  • PDF

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

Improvement of Pressurized MF Pretreatment in MF/RO Process for Reuse (하수방류수 재이용 MF/RO 공정에서 가압식 MF의 전처리 성능 향상 방안 연구)

  • Na, Yumee;Park, Yong-Min;Lee, Yang-Woo;Kim, Won Kyong;Kim, Ji-Tae;Cho, Il-Hyoung
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.350-357
    • /
    • 2014
  • Pressurized MF membranes are used to remove suspended solid and colloidal materials of wastewater treatment plant effluent as the pretreatment of RO in reuse water production process. Membrane operation data and pollutants removal efficiency are investigated using 100 t/d scale pilot plant in J wastewater treatment plant located in Namyangju city. 40 LMH flux of pressurized MF membrane are obtained in various turbidity and temperature condition. Coagulation of dissolved organic enables flux improvement of MF from 40 LMH to 60 LMH. Pressure drop of 1st RO elements rapidly increased after long-term pause, which is because the complex contamination of organic matter and ionic substances of pluming systems.

Fates and Removals of Micropollutants in Drinking Water Treatment (정수처리 과정에서의 미량오염물질의 거동 및 제거 특성)

  • Nam, Seung-Woo;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-407
    • /
    • 2013
  • Micropollutants emerge in surface water through untreated discharge from sewage and wastewater treatment plants (STPs and WWTPs). Most micropollutants resist the conventional systems in place at water treatment plants (WTPs) and survive the production of tap water. In particular, pharmaceuticals and endocrine disruptors (ECDs) are micropollutants frequently detected in drinking water. In this review, we summarized the distribution of micropollutants at WTPs and also scrutinized the effectiveness and mechanisms for their removal at each stage of drinking water production. Micropollutants demonstrated clear concentrations in the final effluents of WTPs. Although chronic exposure to micropollutants in drinking water has unclear adverse effects on humans, peer reviews have argued that continuous accumulation in water environments and inappropriate removal at WTPs has the potential to eventually affect human health. Among the available removal mechanisms for micropollutants at WTPs, coagulation alone is unlikely to eliminate the pollutants, but ionized compounds can be adsorbed to natural particles (e.g. clay and colloidal particles) and metal salts in coagulants. Hydrophobicities of micropollutants are a critical factor in adsorption removal using activated carbon. Disinfection can reduce contaminants through oxidation by disinfectants (e.g. ozone, chlorine and ultraviolet light), but unidentified toxic byproducts may result from such treatments. Overall, the persistence of micropollutants in a treatment system is based on the physico-chemical properties of chemicals and the operating conditions of the processes involved. Therefore, monitoring of WTPs and effective elimination process studies for pharmaceuticals and ECDs are required to control micropollutant contamination of drinking water.

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.

Antioxidant Activity of a Chitin-degrading Bacterium Bacillus idriensis (CGH18) (키틴분해 박테리아 Bacillus idriensis (CGH18)의 항산화 활성)

  • Jung, Myoung Eun;Hong, Joo Wan;Lee, Jeong-Im;Kwak, Myoung Kuk;Kim, Hojun;Sohn, Jae Hak;Song, Young-Sun;Oh, Kwang-Suk;Seo, Youngwan
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • A bacterium CGH18 exhibiting antioxidizing and chitin-degrading activities in the colloidal chitin culture medium was isolated from salt-fermented crab. This strain was identified as Bacillus idriensis based on 16S rDNA sequence homology search. Its crude extract was partitioned between n-BuOH and $H_2O$. The organic layer was further partitioned between $CH_2$ $Cl_2$ and $H_2O$. Antioxidant activities of crude extract and its solvent fractions were evaluated using five different bioassay methods, including the degree of occurrence of intracellular reactive oxygen species (ROS), peroxynitrite scavenging (ONOO), and oxidative damage of genomic DNA. All fractions exhibited significant antioxidant activity in bioassay systems used.

The Preparation for Sintered Body of $CeO_2$ Based Complex Oxide in Low Temperature Solid Oxide Fuel Cells Using Colloidal Surface Chemistry (콜로이드 계면화학을 이용한 저온형 고체전해질용 $CeO_2$계 복합 산화물의 소결체 제조)

  • 황용신;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.705-712
    • /
    • 2000
  • In this study, the dispersion stability of CeO2 based complex oxide was studied, and density, porosity, and microstructure of green body were investigated using colloid surface chemistry to manufacture the Gd2O3 doped CeO2 solid electrolyte in an aqueous system. To prepare the stable slurry for slip casting, the dispersion stability was examined as a function of pH using ESA(electrokinetic sonic anplitude) analysis. The dynamic mobility of particles was enhanced with anionic and cationic dispersant were added the amount of 0.5wt% respectively, but pH value in slurries didn't move to below 6.0 because of the influence of dopants. This phenomenon also appeared in the CeO2-Y2O3 and CeO2-Sm2O3 systems, so it could be inferred that rare earth dopants such as Gd2O3, Sm2O3 and Y2O3 not only have the similar motion with changing pH in an aqueous system but also can be dissolved in the range of pH 6.0∼6.5. In CeO2-Gd2O3 system, when the anionic dispersant was added the amount of 0.5wt% and pH value in slurries was fixed at 9.5, the green body density was 4.07g/㎤, and the relative density of sintered body was 95.2%. It could be inferred from XRD analysis that Gd3+ substituted into Ce4+ site because there was no free Gd2O3 peak.

  • PDF

Seawater Desalination Pretreatments and Future Challenges (해수담수화 전처리 기술과 향후 도전)

  • Jang, Hoseok;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.301-309
    • /
    • 2015
  • Importance of pretreatment for seawater desalination is growing rapidly. Proper selection of pretreatment is critical for the successful, long-term operation in the seawater desalination plant such as seawater reverse osmosis (SWRO). The purposes of seawater pretreatment are to remove particulate, colloidal materials, organic, inorganic materials, microorganisms and their by-products present in the seawater, and thus to improve the performance of seawater desalination systems. However, pretreatment is most challenging for designing and operating seawater desalination plants because of fluctuations of water qualities, site specifications and wide ranges of target materials present in the seawater to be treated. In addition, it is also becoming evident increasingly that microscopic algae are a major cause of operational problems, for example, membrane fouling which is long-standing problem in SWRO process. Pretreatment strategies prior to the operation of seawater desalination technologies should be even more complicated by algae blooms and release of their harmful by-products in marine environment. This paper reviews the roles of various pretreatment methods in seawater desalination process. Benefits and drawbacks are described, which should be taken into account in future studies on selecting pretreatment for seawater desalination process.

High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries (고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발)

  • Kim, Cang-Hyun;Im, Hyung-Soon;Cho, Yong-Jae;Chung, Chan-Su;Jang, Dong-Myung;Myung, Yoon;Kim, Han-Sung;Back, Seung-Hyuk;Im, Young-Rok;Park, Jeung-Hee;Song, Min-Seob;Cho, Won-Il;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.181-189
    • /
    • 2012
  • We developed a new high-yield synthesis method of free-standing germanium nanocrystals (Ge NCs) by means of the gas-phase photolysis of tetramethyl germanium in a closed reactor using an Nd-YAG pulsed laser. Size control (5-100 nm) can be simply achieved using a quenching gas. The $Ge_{1-x}Si_x$ NCs were synthesized by the photolysis of a tetramethyl silicon gas mixture and their composition was controlled by the partial pressure of precursors. The as-grown NCs are sheathed with thin (1-2 nm) carbon layers, and well dispersed to form a stable colloidal solution. Both Ge NC and Ge-RGO hybrids exhibit excellent cycling performance and high capacity of the lithium ion battery (800 and 1100 mAh/g after 50 cycles, respectively) as promising anode materials for the development of high-performance lithium batteries. This novel synthesis method of Ge NCs is expected to contribute to expand their applications in high-performance energy conversion systems.