• Title/Summary/Keyword: Colloidal systems

Search Result 61, Processing Time 0.03 seconds

Collodial Properties and Acid Consuming Capacity of Hydrous Aluminum Oxide Suspension (제산제 알루미나수화물의 콜로이드성과 제산능)

  • 이계주;이기명
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 1991
  • Rheological, colloidal and micromeritical properties were followed to investigate aging mechanisms of hydrous aluminum oxide suspension using Zeta-meter systems, BET adsorption apparatus, Master sizer and electronmicroscope. The results indicate that hydrous aluminum oxide suspension revealed plastic flow with thixotropy. The viscosity, thixotropy and yield value were increased with increasing concentration. During aging process, the viscosity and thixotropic index were increased by an addition of glycerin, however, sorbitol stabilized aging process of the suspension being accompanied with growth of particle size and reduction in specific surface area, pore area and pore volume, and consistency. Diminution of adsorptive power of the particles was also protected by addition of sorbitol to hydrous aluminum oxide suspension. From these results, one of aging mechanism of hydrous aluminum oxide suspension assumed growth and/or crystallization of colloidal particles in aqueous suspension.

  • PDF

A Lattice Model for Intramolecular and Intermolecular Association in Alkane + Nonionic Surfactant Systems (알칸과 비이온계면활성 계를 위한 분자 내외부 회합을 위한 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.103-107
    • /
    • 2009
  • Intramolecular association is an important contribution to the overall hydrogen bonding in supercritical fluid systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intramolecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The present EOS could correlate the literature data well for mixtures containing nonionic surfactant systems.

  • PDF

A Quasi-Chemical Inter and Intra Molecular Association Nonrandom Lattice Model for Surfactant Systems (계면활성제계를 위한 준화학 분자내외부 회합 비무질서도 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.485-488
    • /
    • 2011
  • Intramolecular association is an important contribution to the overall hydrogen bonding in supercritical fluid systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intramolecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The present EOS could correlate the literature data well for mixtures containing nonionic surfactant systems.

  • PDF

A Molecular Associating Lattice Model for Mixtures Containing Amphiphiles (양친매성 물질을 함유한 혼합물을 위한 회합성 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.177-181
    • /
    • 2012
  • Association is an important contribution to the overall hydrogen bonding in surfactant systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intramolecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The present EOS could correlate the literature data well for mixtures containing nonionic surfactant systems.

  • PDF

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

Antibacterial Finishing of PET Nonwovens with Colloidal Solution of Nano-sized Silver (나노 사이즈의 은 콜로이드 용액을 이용한 폴리에스테르 부직포의 항균가공)

  • Lee, Hoon-Joo;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.386-389
    • /
    • 2001
  • Researches for nanotechnology are inherently multidisciplinary since on the biological, and chemical components and systems are essentially the same. As the synthetics develop, many people are concerned about the influences of natural environment and hygiene of manufactures. By this reason, a new area has developed in the realism of textile finishing. The aim of this work is to consolidate nanotechnology into bacteriostasis of textile. (omitted)

  • PDF

Biocompatible Nanoparticles with Well-defined Surface Chemistry for Smart Drug Delivery

  • Min, Dal-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.107-107
    • /
    • 2013
  • Many nanomaterials are being harnessed as critical components in various systems for biomedical applications including diagnosis, imaging, and drug delivery. Those systems necessitate biocompatibility and low toxcity within effective dose range while achieving enough efficacy. Even though many nanomaterials enjoy successful demonstrations in bioapplications, lack of biocompatibility and high cytotoxicity often become hurdles for practical bioapplications. On the other hand, it is important to achieve enough efficiency based on chemically well-defined systems with efforts to understand mechanism at molecular level. Here, we developvarious biocompatible nanomaterials based on simple procedure using dextran as both reducing agent and surface coating. Dextran is one of the popular biocompatible polymers that have been used for drug delivery and biosensors. Dextran coated nanomaterials showed excellent colloidal stability, flexible surface chemistry for conjugation of bioactive molecules and low cytotoxicity with successful demonstrations in various bioapplications.

  • PDF