• 제목/요약/키워드: Collision-free Path Space

검색결과 45건 처리시간 0.025초

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

  • Kim, Hyun-Gil;Yu, Kyeon-Ah;Kim, Jun-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.867-873
    • /
    • 2011
  • A navigation mesh (NavMesh) is a suitable tool for the representation of a three-dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is the huge state space. When the $A^*$ algorithm is applied to polygonal meshes for detailed terrain representation, the pathfinding can be inefficient due to the many states to be searched. In this paper, we propose a method to reduce the number of states searched by using visibility tests to achieve fast searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible vertices of the obstacles from the critical states and uses the heuristic function of $A^*$, defined as the distance to the goal through such visible vertices. The results show that the number of searched states can be substantially reduced compared to the $A^*$ search with a straight-line distance heuristic.

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Locationing of telemanipulator based on task capability

  • Park, Young-Soo;Yoon, Jisup;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.392-395
    • /
    • 1995
  • This paper presents a time efficient method for determining a sequence of locations of a mobile manipulator that facilitates tracking of continuous path in cluttered environment. Given the task trajectory in the form of octree data structure, the algorithm performs characterization of task space and subsequent multistage optimization process to determine task feasible locations of the robot. Firstly, the collision free portion of the trajectory is determined and classified according to uniqueness domains of the inverse kinematics solutions. Then by implementing the extent of task feasible subspace into an optimization criteria, a multistage optimization problem is formulated to determines the task feasible locations of the mobile manipulator. The effectiveness of the proposed method is shown through a simulation study performed for a 3-d.o.f. manipulator with generic kinematic structure.

  • PDF

최적 경유점을 갖는 전역 DWA에 기반한 이동로봇의 주행 (Mobile Robot Navigation based on Global DWA with Optimal Waypoints)

  • 함종규;박중태;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.624-630
    • /
    • 2007
  • The dynamic window approach(DWA) is a well known technique for reactive collision avoidance. It shows safe and efficient performance in real-world experiments. However, a robot can get stuck in local minima because no information about the connectivity of the free space is used to determine the motion. The global DWA can solve this problem of local minima by adding a navigation function. Even with the global DWA, it is still difficult for a robot to execute an abrupt change in its direction, for example, entering from the corridor to a doorway. This paper proposes a modified global DWA using the included angles of waypoints extracted from an optimal path. This scheme enables the robot to decelerate in advance before turning into the doorway. Therefore the robot can reach the goal position more safely and efficiently at high speeds.

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.