• 제목/요약/키워드: Collision-damage analysis

검색결과 113건 처리시간 0.021초

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu;Sang-Hyun Park;Sang-Rai Cho
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.124-136
    • /
    • 2024
  • As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가 (Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor)

  • 류연선;조현만;김서현
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

  • Campanile, A.;Piscopo, V.;Scamardella, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.21-36
    • /
    • 2018
  • The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

  • Chung, Chul-Hun;Choi, Hyun;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.553-564
    • /
    • 2013
  • This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

국내외 철도 사고 사례분석을 통한 열차 충돌/탈선 사고 위험도 분석 (Hazardous Analysis for Train Collision and Derailment through the Analysis of Railroad Accident Type at Domestic and Foreign)

  • 이찬우;왕종배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.151-154
    • /
    • 2007
  • THE DOMESTIC AND FOREIGN OF THE COUNTRY RAILROAD ACCIDENT ANALYSIS IT LED FROM THE PAPER WHICH IT SEES AND IT ANALYZED A TRAIN COLLISION/DERAILED ACCIDENT RISK FIXED QUANTITY. THE TRAIN ACCIDENT OCCURS DIRECT AND LATENT DAMAGE. IT CLASSIFIES THE ACCIDENT WHICH 5 YEAR FOR OCCURS RECENTLY DOMESTIC AND FOREIGN OF THE COUNTRY WITH A TYPE FROM THE RESEARCH WHICH IT SEES. IT TRIED TO ANALYZE THE DAMAGE SIZE AGAINST A TRAIN COLLISION/DERAILED ACCIDENT WITH DANGEROUS QUOTIENT.

  • PDF

간이 해석 기법을 이용한 FPSO 충돌 해석 (FPSO Collision Analysis Using a Simplified Analytical Technique)

  • 한상민;이토히사시
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.25-33
    • /
    • 2010
  • Collision between vessels may lead to structural damage and penetration of hulls. The structural damage of a hull may eventually bring about global collapse of the hull girder and outflow of oil, which would contaminate seawater. Therefore, various regulations require the strength of a vessel after collision to satisfy given criteria, and owners usually request collision analyses to confirm the structural safety of their vessels. In the process of designing a vessel to satisfy the collision strength criteria, the strength has been assessed mostly by conducting collision analyses using numerical techniques, such as dynamic, non-linear, finite-element analysis. Design is an inherently iterative process during which many changes are necessary due to the endless needs for reinforcement and modification. Numerical techniques are not adequate for coping with a situation in which collision analysis is frequently required to provide the revised results that reflect the repetitive changes in designs. Numerical techniques require a lot of time and money to conduct in spite of recent improvements in computing power and in the productivity of modeling tools. Therefore, in this paper, an analytical technique is introduced and a collision problem is idealized and simplified using reasonable assumptions based on appropriate background. The technique was applied to an example of an actual FPSO and verified by comparing the results with results from the numerical technique. A good correlation was apparent between the results of the analytical and numerical techniques.

스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석 (Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model)

  • 조상래;권종식
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

차량의 충돌을 고려한 지하차도 기둥의 손상 평가 (Damage Evaluation for the Column of Underpass Considering the Collision of a Vehicle)

  • 박장호;김영웅;박재균
    • 한국전산구조공학회논문집
    • /
    • 제28권2호
    • /
    • pp.169-176
    • /
    • 2015
  • 교량의 교각 설계시에는 설계기준에 의거하여 차량의 충돌에 대비한 적절한 방호시설 등이 고려되고 있으나, 지하차도의 기둥 설계시에는 차량의 충돌과 관련된 규정이 없다. 또한 지하차도의 기둥은 상대적으로 폭이나 두께가 작아서 차량의 충돌에 의하여 큰 손상이 발생할 수 있다. 본 논문에서는 지하차도 기둥에 대한 충돌해석을 통하여 차량의 충돌에 의한 구조물의 손상을 평가하였다. 충돌해석에서는 지하차도 기둥의 물성과 형태 그리고 차량의 속도와 종류 등이 매개변수로 고려되었다. 수치해석 결과 지하차도 기둥이 심하게 손상되는 경우가 있었으며 따라서 지하차도의 기둥 설계시에는 차량 충돌에 대한 적절한 고려가 필요하다.

컨테이너/로로 선 종격벽의 트레일러 충돌해석 (Collision Analysis of Longitudinal Bulkhead of Container/RO-RO Ship with Trailer)

  • 강명훈;송인;이상균;김상곤;조상래
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, a collision accident of a container/Ro-Ro ship was numerically analyzed. A container trailer collided with a longitudinal bulkhead of the ship in the accident, which constituted a longitudinal wall of a heavy fuel oil tank. Due to the accident, the bulkhead plate was ruptured and the heavy fuel oil spilled out of the tank. The detailed information regarding the collision velocity and the mass of the trailer was not provided. Therefore, several collision accident scenarios were constructed based upon the arrangement of the ramp way. Each collision accident scenario was analyzed to predict the extents of damage using a commercial numerical package, ABAQUS. Based on the analysis results it is proposed how to minimize the extents of damage. Through the investigations performed in this study it was found that the understandings of various damages due to collision accidents and the developments of structural design guidance against collision are necessary for the betterment of Container/RO-RO ships' performance.

  • PDF