• Title/Summary/Keyword: Collision speed

Search Result 507, Processing Time 0.025 seconds

A Study on the Improvement of Survival Rate of the Passengers and Crews according to FDS Analysis (FDS 분석을 통한 승객 및 선원 생존율 향상에 대한 연구)

  • Kim, Won Ouk;Kim, Jong Su;Park, Woe Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.312-317
    • /
    • 2015
  • Seafarers can confront to evacuate from the ship with many reasons such as collision, grounding and fire accident. It believes that evacuation time from ship is very important element in order to increase survival rate in the contingency circumstance, however narrow and complex structure of ship is one of obstacle element against prompt evacuation. Taking into consideration the unique structure of ship compared to the structure of other facilities, speed of fire propagation on board ship is faster than the same size of other type facilities. Therefore, measures to prompt evacuation are required. But it comes with the behavioral constraints of the crews and passengers of the nature of operating in a complex structure with narrow vessels. Therefore, in this study, we propose a formula to be analyzed by theoretical approach and simulation methods to improve the survival rate for the crew and passenger of the ship through the ship's structural modification. We analyzed the temperature rise and visibility which are the most influential effects on the life safety in the event of fire by using a three-dimensional analysis of sight-only program Fire Dynamic Simulator (FDS) as analytical tools.

Predict ion-based Concurrency Control for A Large Scale Networked Virtual Environment Supporting Various Navigation Speed (다양한 이동속도를 지원하는 대규모 네트웍 가상 환경을 위한 예측 기반 동시성 제어)

  • 이은희;이동만;한승현;현순주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.202-204
    • /
    • 2001
  • 가상 세계의 공유 개념은, 특히 사용자들이 인터넷 같이 대규모 네트웍을 통해 지역적으로 분산된 경우는 복제가 수용할 수 있는 상호작용 성능을 제공하기 때문에 각 사용자의 사이트에 정보를 복제함으로써 확장된다. 그러나, 다수의 동시 갱신은 replicas간의 일관되지 않은 뷰를 일으키게 될 것이다. 따라서, 동시성 제어가 복제자들간에 일관된 상태를 유지하도록 하기 위한 중요한 요소가 된다. 우리는 단지 대상 객체의 주변에 있는 사용자들만이 소유권 요청을 다중 전송하게 하는 확장성 있는 예측기반 동시성 제어 스킴을 제안했었다. 이 작업에서, 우리는 모든 사용자들이 동일한 속도론 가지고 가상 세계를 이동한다고 가정했다. 이것은, 그러나, 좀더 사실성을 더하기 위해 사용자가 가상 세계와 상호작용을 할 매 그들의 이동속도를 변경하도록 하는 네트웍 게임같은 네트웍 가상 환경에서는 너무 common 하다. 본 논문은 다양한 속도를 가진 사자를 지원하기 위한 확장을 제안한다. 확장된 스킴은 다른 속도의 수만큼의 다중 Entity Radii를 가지며 각 속도를 가진 사용자에게 분리된 큐를 할당한다. 각 큐는 다음 소유자 후보를 예측하기 위해 동시에 예측을 수행하고 선택된 후보들간에서 최소의 Predicted Collision Time을 가지는 최종 후보자가 선택된다. 이는 사용자의 속도에 기반을 둔 적절한 Entity Radius를 사용함으로써 소유권의 timely advanced transfer과, 다른 이돔 속도와 latency를 가지는 사용자들 간의 간섭을 줄임으로써 공정(공평)한 소유권 양도, 그리고 불필요한 소유권 전송을 줄임으로써 놓은 예측 정확도를 제공한다.성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.다.으로서 hemicellulose구조가 polyuronic acid의 형태인 것으로 사료된다. 추출획분의 구성단당은 여러 곡물연구의 보고와 유사하게 glucose, arabinose, xylose 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아

  • PDF

VLSI Design of Interface between MAC and PHY Layers for Adaptive Burst Profiling in BWA System (BWA 시스템에서 적응형 버스트 프로파일링을 위한 MAC과 PHY 계층 간 인터페이스의 VLSI 설계)

  • Song Moon Kyou;Kong Min Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • The range of hardware implementation increases in communication systems as high-speed processing is required for high data rate. In the broadband wireless access (BWA) system based on IEEE standard 802.16 the functions of higher part in the MAC layer to Provide data needed for generating MAC PDU are implemented in software, and the tasks from formatting MAC PDUs by using those data to transmitting the messages in a modem are implemented in hardware. In this paper, the interface hardware for efficient message exchange between MAC and PHY layers in the BWA system is designed. The hardware performs the following functions including those of the transmission convergence(TC) sublayer; (1) formatting TC PDU(Protocol data unit) from/to MAC PDU, (2) Reed-solomon(RS) encoding/decoding, and (3) resolving DL MAP and UL MAP, so that it controls transmission slot and uplink and downlink traffic according to the modulation scheme of burst profile. Also, it provides various control signal for PHY modem. In addition, the truncated binary exponential backoff (TBEB) algorithm is implemented in a subscriber station to avoid collision on contention-based transmission of messages. The VLSI architecture performing all these functions is implemented and verified in VHDL.

Drivers' Workloads through the Driving Vehicle Test at Intersections (교차로 실차주행 실험을 통한 운전자 부하요인에 관한 연구)

  • Seo, Im-Ki;Park, Je-Jin;Sung, Soo-Lyeon;NamGung, Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 2012
  • Different from general roads, intersections are the points where roads having different geometric structure and traffic operation system are met, and thereby they have complicated road structure and environmental factors. Various changes in driving patterns such as collision between vehicles approaching from roads adjacent to intersections, sudden stop of vehicles upon stop sign, quick start upon green lights kept increasing traffic accidents. It is known that traffic accidents are mainly derived from human factors. This study, in order to find out factors affecting drivers' behaviors within intersections, measured physiological responses such as brain wave, sight, driving speed, and so on by using state-of-the-art measuring device. As to concentration brain wave at individual intersections, it was found out that brain wave of testes was higher at main Arterial and accident-prone intersections compared with that of subsidiary Arterial. In addition, it was detected that drivers' visual activity was widely distributed at accident-prone intersections, meaning that it enhanced cautious driving from nearby vehicles. As to major factors causing drivers' workloads, factors from nearby vehicles such as deceleration, acceleration, lane change of nearby vehicles appeared as direct factors causing drivers' workloads, clarifying that these factors were closely related to causes of traffic accidents at intersections. Results of this study are expected to be used as basic data for evaluation of safety at intersections in consideration of physiological response of drivers.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Changes of Various Balls Velocity under the Different Surface Conditions after Impact (충돌 후 지면 조건에 따른 다양한 볼의 속도변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • The purpose of this study was to investigate the changes of various balls velocity under the different surface conditions after impact. For this study, four different balls were used which are golf ball, tang-tang ball, table tennis ball, and iron ball. And two different types of ground conditions were used which are artificial grass green and glass green. Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. To transfer the same amount of kinetic energy to the ball, pendulum putting machine was used. Analyzing the process of impact and the ball movement, a putter was digitized the whole movement but the ball was digizited within the 50cm movement. Velocities were calculated by the first central difference method(Hamill & Knutzen, 1995). Putter head velocities were about 112.2cm/s-116.2cm/s at impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Table tennis ball recorded higher ball velocities than the other ball velocities and iron ball recorded the lowest ball velocity in this group. But Table tennis ball was influenced with the frictional force and immediately was decreased at the artificial grass green condition. If an object is received the kinetic energy under the static condition(v=0cm/s), the object recorded the maximum velocity shortly after the impact and then decreased the velocity because of the frictional force. The ball distance from the start position to the peak velocity position is about 6cm-10cm under the 112.2cm/s-116.2cm/s putting velocity with putter. 0.25 seconds later after impact balls were placed 40cm distance from the original position except iron ball. In this study, ball moving distances were too short therefore it was not possible to investigate the reactions after the translational force is disappeared. Rotational force would play a major role at the end of the ball movement. Future study must accept two things. One is long distance movement of ball and the other is balanced ground. Three-piece ball is a good item to investigate the golf ball movement on the different surface conditions.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.

A Study on Design of Smart Home Service Robot McBot II (스마트 홈 서비스 로봇 맥봇II의 설계에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1824-1832
    • /
    • 2011
  • In this paper, a smart home service robot McBot II is newly developed in much more practical and intelligent system than McBot I which we had developed a few years ago. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot McBot II to completely overcome this problem on real environments. The mechanical design and the basic control of McBot II, which performs mess-cleanup function etc. in house, is actually focused in this paper. McBot II is mechanically modeled in the same method that the human works in door by using the waist and the hands. The big-ranged vertical lift and the shoulder joints to be able to forward move are mechanically designed for the operating function as the human's waist when the robot works. The mobility of McBot II is designed in the holonomic mobile robot for the collision avoidance of obstacle and the high speed navigation on the small area in door. Finally, good performance of McBot II, which has been optimally desinged, is confirmed through the experimental results for the control of the robotic body, mobility, arms and hands in this paper.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.