• Title/Summary/Keyword: Collision speed

Search Result 507, Processing Time 0.023 seconds

Bank Effect of a Ship Operating in a Shallow Water and Channel (천수 및 수로 운항 시 선박의 측벽효과)

  • Park, Dong-Woo;Choi, Hee-Jong;Pai, Kwang-Jun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • When a ship operates in a shallow water and channel, the hull sinkage and asymmetrical force generated around the ship by the influence of sea bottom and bank walls are caused collision with sea bottom, other ships or the bank itself. Especially, the shipping company and pilots navigating the area of Europe and North America with many channels are deal with it as a important matter to prevent collision. In this paper, hydrodynamic force generated between the ship and bank using the numerical analysis for the safe navigation of ship, that is, sway force and yaw moment should be presumed qualitatively. It makes a program for fluid analysis of the shallow water and bank effect. Analyses are carried out for three kind of parameter, that is, ship's speed, water depth and ship-bank distance for crude oil carriers. The numerical analysis results are compared with results of the experiments and the previous published papers.

Implementation of a Medical Information Transmission Protocol Based on Mobile Wireless Communication (무선 이동통신 기술에 기반한 의료 정보 전송 프로토콜 구현)

  • 정희창;한민수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 1998
  • The main goal of this paper is to propose and to test a radio protocol based CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) for the purpose of enhancing the existing medical information system. The feature of the new medical information system, Medical Application Radio System(MARS), which operating in real time is the transmission of medical information in bi-direction between the hospital control office and patients mobile stations. MARS monitors patients linked to the network by radio and provides quick alarm, flexible documentation capabilities, asnd fast treatment for the analysis of collected medical data. The existing medical information system, radio telemetry system which transfers the message of patients to the CAP(Central Access Point) unit in one way at the speed of 9.6Kbps and operates a channel frequency bandwidth. To verify the Performance of the proposed system, we have performed the numerical analysis and have implemented a test system which consists of the 2.4Ghz radio transceiver and personal computer.

  • PDF

Trajectory Regeneration Considering Velocity of Dynamic Obstacles Using the Nonlinear Velocity Obstacles (동적 장애물의 속도를 고려한 이동로봇의 궤적 재생성 기법)

  • Moon, Chang-Bae;Chung, Woojin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1193-1199
    • /
    • 2014
  • To achieve safe and high-speed navigation of a mobile service robot, velocity of dynamic obstacles should be considered while planning the trajectory of a mobile robot. Trajectory planning schemes without considering the velocity of the dynamic obstacles may collide due to the relative velocities or dynamic constraints. However, the general planning schemes that considers the dynamic obstacle velocities requires long computational times. This paper proposes a velocity control scheme by scaling the time step of trajectory to deal with dynamic obstacle avoidance problem using the RNLVO (Robot Nonlinear Velocity Obstacles). The RNLVO computes the collision conditions on the basis of the NLVO (Nonlinear Velocity Obstacles). The simulation results show that the proposed scheme can deal with collision state in a short period time. Furthermore, the RNLVO computes the collisions using the trajectory of the robot. As a result, accurate prediction of the moving obstacles trajectory does not required.

A Study on the Ship's Performance of T.S. HANBADA(III) - The Evaluation of Maneuvering Performance with Actual Ship Trials - (실습선 한바다호의 운항성능에 관한 연구(III) - 실선시험을 통한 조종성능 평가 -)

  • Jung, Chang-Hyun;Lee, Hyong-Ki;Kong, Gil-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • Various turning tests were carried out according to the rudder angle, turning direction, and the speed etc. with the ship's maneuverability measuring system on the training ship HANBADA. After that they were compared with each other on the turning circle, maneuvering performance index and the distance of new course, and then found out that they were satisfied with the IMO maneuvering standards. And the turning circles of port were smaller than those of starboard with all the rudder angles and maneuvering indexes such as K and T were relatively bigger than other vessels. Also, the distance cf new course was measured to $125{\sim}300m$ in case of the new course on $30^{\circ}{\sim}90^{\circ}$. All of these results will be helpful to escape from collision and to alter course on coastal voyage.

Development of Pedestrian Fatality Model using Bayesian-Based Neural Network (베이지안 신경망을 이용한 보행자 사망확률모형 개발)

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.139-145
    • /
    • 2006
  • This paper develops pedestrian fatality models capable of producing the probability of pedestrian fatality in collision between vehicles and pedestrians. Probabilistic neural network (PNN) and binary logistic regression (BLR) ave employed in modeling pedestrian fatality pedestrian age, vehicle type, and collision speed obtained from reconstructing collected accidents are used as independent variables in fatality models. One of the nice features of this study is that an iterative sampling technique is used to construct various training and test datasets for the purpose of better performance comparison Statistical comparison considering the variation of model Performances is conducted. The results show that the PNN-based fatality model outperforms the BLR-based model. The models developed in this study that allow us to predict the pedestrian fatality would be useful tools for supporting the derivation of various safety Policies and technologies to enhance Pedestrian safety.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

Analysis of Intersection Signal Violation Accident Using Simulation (시뮬레이션을 이용한 교차로 신호위반 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.424-430
    • /
    • 2021
  • Determining the cause of a traffic signal violation is difficult if the drivers' claims are contradictory. In this study, the process of identifying signal violations using a simulation was presented based on cases. First, statements from the driver or witness whose cause of the signal violation is unclear were excluded. Second, the final position, final location, damaged area, steering status, braking status, and road surface traces of the vehicle were collected. The impact point was investigated from the stop line. Third, simulation data were modified and entered until the collision situation of the accident vehicle and the final stop position were met. Fourth, if the simulation results were consistent with the crash situation, the facts were verified by cross-validation to conform to the driver's statement. The results of the simulation showed that the Lexus entered the left turn signal in the intersection at approximately 55 km/h. In comparison, the Sonata driver saw the vehicle straight ahead at the intersection, entered the 72 km/h intersection, and collided with the Lexus. Therefore, the Sonata was identified as a signal violation, and the claims of the Sonata driver, witnesses, and police were contradictory.

Comparison of the Free-Fall Impact Force Applied to a Multicopter PAV According to External Airbag Folding Method (외부 에어백 폴딩 방식에 따른 자유 낙하 충돌 시 멀티콥터형 개인용 항공기에 가해지는 충격력 비교)

  • Jang, Yoon Ho;Kim, Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.28-39
    • /
    • 2022
  • With the development of small multicopter PAV (Personal Air Vehicle), it is necessary to develop safety-related devices for manned rotorcraft. In this study, we assumed that an external airbag can be installed in a small multicopter PAV, and using LS-DYNA's Airbag Folding Application, we performed a free-fall collision analysis by modeling the airbag shapes consisting or Roll, Zigzag, and Sigma. There was no significant difference in the final airbag deployment time of the three models. However, when it collides with the ground during deployment, the Sigma fold type external airbag had the fastest deployment speed, applying the most impact force to the PAV, while the Roll fold type external airbag applied the smallest impact force to the PAV.

Study on the Identification of Ship Maneuverability Required for Navigational Officers based on AHP Analysis (AHP 분석 기반 항해사 필요 선박조종성능 식별 연구)

  • Kang, Suk-Young;Ahn, Young-Joong;Yu, Yong-Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.800-808
    • /
    • 2022
  • The International Maritime Organization adopted the interim standards for ship maneuverability in November 1993 for preventing collision of ships at sea and for protecting the marine environment, and based on the accumulated data, in December 2002, the established standards for ship maneuverability were adopted. However, the standards adopted are those at full load, even keel, and at least 90 % of the ship speed at 85 % of the ship's maximum power. Moreover, these standards have limitations in providing information on maneuverability under actual navigational conditions. Therefore, in this study, frequency analysis AHP analysis techniques were studied by consulting navigational officers, captains, and experts, who have significant knowledge on ship maneuverability, utilization of the current standards, and the information necessary for the operation of the actual ship. The results of this study confirmed that the necessary information on maneuverability for the navigational officer operating the vessel is information about the turning circle at a small angle of 5°-10° and z-test information at maneuvering speed, not sea speed. Additionally, in relation to speed control, additional information on deceleration inertia and acceleration inertia is needed than the information on the stopping ability at sea speed and full loaded condition. The derived results are considered to be useful as basic data for preparing guidelines for ship maneuverability necessary for navigational of icers who operate ships.