• Title/Summary/Keyword: Collision speed

Search Result 508, Processing Time 0.033 seconds

Development of Low-pressure Gas Gun Type Impact Tester using CFD Simulation (유동해석을 통한 저압 가스 건 타입 고속 충격시험기 개발)

  • P. H. Kim;S. K. Lee;O. D. Kwon;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2024
  • Supersonic aircraft and missiles often encounter damage issues due to high-speed collisions with small objects such as ice particles and water droplets. This can significantly impact the safety and performance of these vehicles, making the assessment and development of collision testing crucial. Existing collision testing methods have relied on equipment such as gas guns, which utilize high pressure. However, most accelerators for projectiles are large-scale devices designed for weaponry and high-pressure gases, rendering them inaccessible and unsuitable for laboratory use. Therefore, there is a need for research into easily accessible and economically efficient testing devices at the laboratory level. An impact tester can launch a projectile with a velocity of 100 m/s using low-pressure compressed air at approximately 10 bar. The velocity of the impact tester projectile is determined by the pressure within the chamber, friction, and the length of the barrel. In this study, computational fluid dynamics was utilized to define friction coefficients that match experimental results based on projectile weight, enabling accurate prediction of velocity. The resulting data provides practical and effective insights for the design of impact testers, utilizing the defined friction coefficients to understand and predict complex physical phenomena.

A Study on Speed Limit Rules under Sailing Regulations - Focusing on the Perspective of VTS Control - (항법상 속력의 제한규칙에 관한 고찰 - VTS의 관제 관점에서 -)

  • Chong, Dae-Yul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.254-261
    • /
    • 2022
  • Every vessel shall proceed at a safe speed to avoid collision. Additionally, every vessel shall comply with the speed limit rules in the territorial water and internal waters of Korea. The VTS operator shall properly control the compliance of the vessel with the safe speed and speed limit rules. Safe speed under the COLREG 1972 is not explicitly stipulated in knots. However, under the Domestic law for traffic safety-specific sea areas, etc., the speed limit is specified in knots and complied with. This speed limit rule is mainly based on the 'speed made good over the ground'; however, in some places, it is based on the 'speed making way through the water'. In this paper, I analyzed marine accidents that occurred in the past 5 years and the rate of violation of speed limits. Furthermore, I reviewed safe speed under the COLREG 1972, speed limit rules under domestic and foreign laws, and cases of non-compliance with safe speed in the judgment of the Korea Maritime Safety Tribunal. Resultantly, I suggested in this paper that the speed limit rules in the domestic law must be observed by vessels to prevent marine accidents, and the rules which are stipulated in terms of 'speed making way through the water' must be revised as 'speed made good over the ground' such that the vessels can easily comply with them and the VTS operator can control the vessel properly.

Analysis of Low-Speed Gas Flows Around a Micro-Plate Using a FDDO Method (FDDO 방법을 이용한 미소평판 주위의 저속 유동장 해석)

  • Chung, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.12-19
    • /
    • 2004
  • Low-speed gas flows around a micro-scale flat plate are investigated using a kinetic theory analysis. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the Discrete Ordinate method. Calculations are made for flows around a 5% flat plate with a finite length of 20 microns. The results are compared with those from the Information Preservation method and a continuum approach with slip boundary conditions. It is shown that three different approaches predict a similar basic flow patterns, while the results from the present method are more accurate than those from the other two methods in details.

Stildy on the Methodology to Prevent Neck Injury at tow Speed Rear-End Impact (저속 후면 추돌 시 목부상해 예방을 위한 연구)

  • Park Insong;Chun Yongbum;Kim Guanhee;Lim Jonghun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.29-34
    • /
    • 2005
  • 141,841 car-to-car collision had occurred in 2003, and among the accidents 51,796 were rear-end impact. According to insurance company for loss or damage, more than $60\%$ of rear-end impact victims suffer neck injury. This means at least 31,000 neck injury victims have happened in 2003. More than $97\%$ of the neck injury victims have low severity injury than A.I.S 2. Head restraint, which is designed to limit rearward head movement and equipped on seat, can considerably protect neck from rear-end impact. In this paper we evaluated head restraint geometry and drivers' sitting position according to RCAR standard and carried out low speed volunteer crash test. The crash speed is 4km/h and N.I.C value is used to determine injury probability. Through these research results we can introduce the method to prevent neck injury at rear-end impact.

The Effects of Ocean Surface Bubbles on Sound Wave Transmission (표층 해상의 기포가 음파전달에 미치는 영향)

  • Im, Byun-Kook;Shim, Tae-Bo;Kim, Young-Gyu;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.187-197
    • /
    • 2009
  • The bubbles are created by waves, raindrops, water collision, vessels sailing at sea, life activities of various marine organisms in the ocean and other sources. The bubbles affect the intensity and sound speed of acoustic waves in the ocean. We indirectly observed bubbles in order to understand the creation of and the effects of bubbles on sound waves, using an Acoustic Bubble Spectrometer (ABS) and CTD, from 04:00 to 17:00, 19 September, 2007. We also analyzed the correlation of wind speed and the generation of bubbles, the amount of bubbles, and the sound speed variation at 50, 60, and 70 kHz. Finally, We simulated the way how bubbles affect sound transmission based on the analysis results.

Effect of Elastic-Band Exercise and Cognitive Rehabilitation in Cognition and Walking Speed of Elderly People -Pilot Study-

  • Yu, Seonghun;Lee, Youngsin;Kim, Seongsu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.363-375
    • /
    • 2015
  • Objective: This study aims to recognize the risk of current traffic systems and to investigate a method to decrease risk by doing exercise using an elastic-band and cognitive rehabilitation. Background: The existing traffic system usually focuses on the ordinary citizens, which may not be appropriate to the elderly. It may affect the cognition and walking speed of the elderly. This study tries to examine whether cognition and muscle training is appropriate to improve their vulnerability. Therefore this study will provide human ergonomics - based basic data in relation to the elderly to identify the risk of current signal system and to mitigate the risk. Method: A total of 30 elderly participants were divided into two groups: experimental and control groups. Experimental group (n=15) was trained to strengthen their muscles and to promote cognition, whereas control group (n=15) was not. The training was conducted twice a week for three weeks. To strengthen muscles, a yellow colored elastic-band was used, and a computer program for cognitive rehabilitation was used to develop cognition. In the experimental group, there were significant differences between pre and post exercises However, the control group didn't show any significant difference. The increase in cognition and walking speed was found in the experimental group, whereas there were no differences in the control group. Statistically there was no significant difference between the two groups. Results: The results of this study show that the exercise program using the elastic-band gave a positive effect on gait training thanks to the development of muscle power and balance. Conclusion: This study did not show any statistical difference or significant differences between the two groups, since time was restricted, we believe. Application: The results of the walking speed will help to prevent traffic collision.

An Analysis on the Prevention Effects of Forward and Chain Collision based on Vehicle-to-Vehicle Communication (차량 간 통신 기반 전방추돌 및 연쇄추돌 방지 효과 분석)

  • Jung, Sung-Dae;Kim, Tae-Oh;Lee, Sang-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.36-43
    • /
    • 2011
  • The forward collision of vehicles in high speed can cause a chain collisions and high fatality rate. Most of the forward collisions are caused by insufficient braking distance due to detection time of driver and safe distance. Also, accumulated detection time of driver is cause of chain collisions after the forward collision. The FVCWS prevents the forward collision by maintaining the safety distance inter-vehicle and reducing detection time of driver. However the FVCWS can cause chain collisions because the system that interacts only forward vehicle has accumulated detection time of driver. In this paper, we analyze forward and chain collisions of normal vehicles and FVCWS vehicles on static traveling scenario. And then, we analyze and compare V2V based FVCWS with them after explaining the system. The V2V FVCWS reduces detection time of driver alike FVCWS as well as remove accumulated detection time of driver by broadcasting emergence message to backward vehicles at the same time. Therefore, the system decrease possibility of forward and chain collisions. All backward normal vehicles and 3~4 backward FVCWS vehicles have possibility of forward and chain collisions in result of analysis. However V2V FVCWS vehicles almost do not chain collisions in the result.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Minimum Wind Speed of Dragging Anchor for Ships in Jinhae Bay Typhoon Refuge (진해만 태풍 피항 선박의 주묘 한계 풍속에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Park, Young-Soo;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.474-482
    • /
    • 2021
  • An average of two to three typhoons that occur in the Philippines or Taiwan pass through Korea each year owing to the influence of the geographical location and western winds. Because Jinhae Bay is known as Korea's representative typhoon refuge, it is filled with ships during typhoons and later becomes saturated with ships anchored to the surrounding routes. If a strong wind drags an anchored ship, a collision accident may occur because of the short distance between the ships. Therefore, a systematic anchoring safety management of Jinhae Bay is required. In this study, the minimum wind speeds of a dragging anchor based on the water depths of Jinhae Bay anchorages were investigated. When 7-9 shackles were given, the minimum wind speeds were 48-63, 46-61, and 39-54 knots at depths of 20, 35, and 50 m, respectively. As the water depth increased, the length of the cable laid on the sea bed became shorter than 5 m owing to the external force, and the minimum wind speed showed a significant difference of 4-8 knots. In addition, ships with high holding power anchors (AC-14 type) had higher minimum wind speeds than ships with conventional anchors (ASS type). Finally, it was confirmed that at a depth of 50 m, dragging easily occurred even when a high holding power anchor was applied.

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.