• Title/Summary/Keyword: Collision control algorithm

검색결과 317건 처리시간 0.026초

The Development of Deceleration Determination Algorithm for Automatic Train Spacing

  • Baek, Jong-Hyen;Kim, Jong-Ki;Kim, Yong-Ku;Lee, Young-Hoon;Kim, Baek-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1689-1693
    • /
    • 2003
  • Communication based train control system is applied regularly worldwide. And this system may be used in domestic soon. Communication based train control system does not depend on conventional track circuit. Therefore, position and distance control of train to prevent collision with leading train may become important safety factor. This paper developed collision avoidance algorithm to control trains of several units efficiently for this. In developing a collision avoidance algorithm, it is desirable to avoid the need for additional system. Additional system restricts the development of the algorithm by limiting the effectiveness of the algorithm to only those areas where the additional system can be afforded and has been installed.

  • PDF

동역학 기반의 지능 힘제어 방식을 이용한 이동 로봇의 장애물 회피에 대한 연구 (Collision Avoidance of a Mobile Robot Using Intelligent Force Control Algorithm Based on Robot Dynamics)

  • 장은수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.799-808
    • /
    • 2004
  • In this paper, a new collision avoidance algorithm based on the dynamic model of a mobile robot is proposed. In order to avoid obstacles on the path of a mobile robot, intelligent force control is used to regulate accurate distance between a robot and an obstacle. Since uncertainties from robot and environment dynamics degrade the performance of a collision avoidance task, neural network is used to compensate for uncertainties so that the collision avoidance can be performed intelligently. Simulation studies are conducted to confirm the proposed collision avoidance tracking control algorithm.

Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구 (A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target)

  • 이찬욱;이성욱
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동 (Proportional Navigation-Based Optimal Collision Avoidance for UAVs)

  • 한수철;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

이동폐색방식의 열차제어시스템에서의 충들 회피를 위한 알고리즘 개발 (The Development of Algorithm for Collision Avoiding in Train Control System Using Moving Block)

  • 백종현;류상환;김종기;조봉관;윤용기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.366-368
    • /
    • 2002
  • Communication based train control system is applied regularly worldwide. And this system may be used in domestic soon. Communication based train control system does not depend on conventional track circuit. Therefore, position and distance control of train to prevent collision with leading train may become important safety factor. This paper developed collision avoidance algorithm to control trains of several units efficiently for this. In developing a collision avoidance algorithm, it is desirable to avoid the need for additional system. Additional system restricts the development of the algorithm by limiting the effectiveness of the algorithm to only those areas where the additional system can be afforded and has been installed.

  • PDF

통신기반 열차제어시스템에서의 충돌회피를 위한 알고리즘 개발 (The Development of Algorithm for Collision Avoiding in Communication Based Train Control System)

  • 백종현;류상환;김종기;윤용기;조봉관
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.459-464
    • /
    • 2002
  • Communication based train control system is applied regularly worldwide. And this system may be used in domestic soon. Communication based train control system does not depend on conventional track circuit. Therefore, position and distance control of train to prevent collision with leading train may become important safety factor. This paper developed collision avoidance algorithm to control trains of several units efficiently for this. In developing a collision avoidance algorithm, it is desirable to avoid the need for additional system. Additional system restricts the development of the algorithm by limiting the effectiveness of the algorithm to only those areas where the additional system can be afforded and has been installed.

  • PDF

HFC-CATV 망에서의 충돌해결알고리즘에 대한 성능분석 (Performance Analysis of an Collision Resolution Algorithm in HFC-CATV Network)

  • 이수연;안정희
    • 한국콘텐츠학회논문지
    • /
    • 제2권3호
    • /
    • pp.113-118
    • /
    • 2002
  • HFC(Hybrid Fiber Coax)기반으로 한 CATV망에서 양방향을 제공하기 위해서는 매체접근제어(Medium Access Control)프로토콜이 필요하다. 특히, 가입자에서 헤드앤드로 데이터를 전송하는 상향채널은 500가입자 이상이 공유하기 때문에 충돌이 발생하게 된다. 본 논문은 HFC-CATV망에 적합한 충돌해결알고리즘인 이진 스택 알고리즘의 안정성(stability)을 연구하기 위해 분석 모델을 제안하고 기존 모델과의 시스템 처리율(throughput)을 비교ㆍ분석하였다

  • PDF

Collision Avoidance Using Linear Quadratic Control in Satellite Formation Flying

  • Mok, Sung-Hoon;Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.351-359
    • /
    • 2010
  • This paper proposes a linear system control algorithm with collision avoidance in multiple satellites. Consideration of collision avoidance is augmented by adding a weighting term in the cost function of the original tracking problem in linear quadratic control (LQC). Because the proposed algorithm relies on a similar solution procedure to the original LQC, its inherent advantages, including gain-robustness and optimality, are preserved. To confirm and visualize the derived algorithm, a simple example of two-vehicle motion in the two-dimensional plane is illustrated. In addition, the proposed collision avoidance control is applied to satellite formation flying, and verified by numerical simulations.

충돌 회피가 보장된 분산화된 군집 UGV의 모델 예측 포메이션 제어 (Distributed Model Predictive Formation Control of UGV Swarm Guaranteeing Collision Avoidance)

  • 박성창;이승목
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.115-121
    • /
    • 2022
  • This paper proposes a distributed model predictive formation control algorithm for a group of unmanned ground vehicles (UGVs) with guaranteeing collision avoidance between UGVs. Generally, the model predictive control based formation control has a disadvantage in that it takes a long time to compute control inputs when considering collision avoidance between UGVs. In this paper, in order to overcome this problem, the formation control algorithm is implemented in a distributed manner so that it could be individually controlled. Also, a collision-avoidance method considering real-time is proposed. The proposed formation control algorithm is implemented based on robot operating system (ROS), open source-based middleware. Through the various simulation tests, it is confirmed that the formation control of five UGVs is successfully performed while avoiding collisions between UGVs.

모델 예측 제어를 활용한 충돌 회피 (Collision Avoidance using Model Predictive Control)

  • 최재웅;서종상;이경수
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.